Math, asked by himanshimishra2, 5 months ago

the length of a tangent from a point a at distance 5 cm from the centre of the circle is 4 cm find the radius of a circle​

Answers

Answered by srijita200642
24

Hᴇʀᴇ's Yᴏᴜʀ Aɴsᴡᴇʀ:-

AB ɪs ᴀ Tᴀɴɢᴇɴᴛ Dʀᴀᴡɴ ᴏɴ Tʜɪs Cɪʀᴄʟᴇ Fʀᴏᴍ Pᴏɪɴᴛ A.

. ° . OB ⍊ AB

OA = 5cm Aɴᴅ AB = 4cm ( Gɪᴠᴇɴ )

Iɴ △ABO,

Bʏ Pʏᴛʜᴀɢᴏʀᴀs Tʜᴇᴏʀᴀᴍ ɪɴ △ABO,

OA2 = AB2 + BO2

⇏52 = 42 + BO2

⇏BO2 = 25 - 16

⇏BO2 = 9

⇏BO = 3

Tʜᴇ Rᴀᴅɪᴜs ᴏғ Tʜᴇ Cɪʀᴄʟᴇ ɪs 3 ᴄᴍ.

Hᴏᴘᴇ ɪᴛ Hᴇʟᴘs ᴜʜ......

Hᴀᴠᴇ ᴀ Gʀᴇᴀᴛ Dᴀʏ......


chandresh126: Great
Answered by Anonymous
106

━━━━━━━━━━━━━━━━━━━━

\bf\underbrace{Question:}

  • The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.??

\bf\underline{Given:}

  • Let the circle be with centre O
  • AB is the tangent from point A
  • Length of tangent = AB = 4cm
  • Also, distance of point from circle = 5 cm

Hence OA = 5cm

\bf\underline{To\:Find:-}

  • Radius i.e. OB

\bf\underbrace\orange{Solution:}

  • \sf{ Since\:AB\:is\: tangent}
  • \sf{Hence \:OB\: || AB}
  • \sf{∠OAB = 90°}

So,

A OAB is a right triangle

In right triangle OAB

Using Pythagoras theorem

(Hypotenuse)² = (Height)² + (Base)²

ㅤㅤ⟹\sf\red{OA² = OB² + AB²}

ㅤㅤ⟹\sf\red{5² = OB² + 4²}

ㅤㅤ⟹\sf\red{OB² = 25 - 16}

ㅤㅤ⟹\sf\red{OB² = 9}

ㅤㅤ⟹\sf\red{OB = } \sf\red{ \sqrt{9}}

ㅤㅤ⟹\sf\red{OB = } \sf\red{ \sqrt{3²}}

ㅤㅤ⟹\sf\red{OB = 3}

\text{\large\underline{\purple{Hence,}}}

\sf\underline{ Radius \:of\: the\: circle \:= OB = \:3cm}

━━━━━━━━━━━━━━━━━━━━

Attachments:

chandresh126: Well Explained ..
Similar questions