Physics, asked by seemasatyam682, 11 months ago

The length of a wire is 3.0. m. The cross-sectional
area is 1.0 mm^2. How much work have to be done in
stretching its length by 0.2 mm ? Young's modulus of
the material of the wire is 2.0 x 10^11 newton/m^2.
Ans. 1.33 X 10^-3J.​

Answers

Answered by shadowsabers03
4

Given,

\sf{L=3\ m}

\sf{A=10^{-6}\ m^2}

\sf{\Delta L=0.2\times10^{-3}\ m}

\sf{Y=2\times10^{11}\ N\ m^{-2}}

If F is the force, the work done is,

\longrightarrow\sf{W=\dfrac{1}{2}\cdot F\cdot \Delta L}

\longrightarrow\sf{W=\dfrac{1}{2}\cdot AY\cdot\dfrac{\Delta L}{L}\cdot\Delta L}

\longrightarrow\sf{W=\dfrac{AY(\Delta L)^2}{2L}}

\longrightarrow\sf{W=\dfrac{10^{-6}\times2\times10^{11}\times(0.2\times10^{-3})^2}{2\times3}}

\longrightarrow\sf{\underline{\underline{W=1.33\times10^{-3}\ J}}}

Similar questions