Physics, asked by tridibplaystore, 9 months ago

The length of copper wire is 100m and its radius is 1mm. Calculate the resistance if resistivity of copper is 1.72 x 10⁻⁸ Ωm.

Answers

Answered by Unni007
15

\boxed{\bold{Resistance=\frac{Resistivity\times Length}{Area}}}

\boxed{\bold{R=\frac{\rho\times l}{A}}}

Here,

  • \rho = 1.72\times10^{-8}\:m
  • l = 100\:m
  • r = 1\:mm=0.001\:m
  • A = \pi r^2=3.14\times (0.001)^2 = 3.14\times 10^{-6}\:m^2

\implies\bold{R=\frac{1.72\times10^{-8}\times 100}{3.14\times 10^{-6}}}

\boxed{\bold{\therefore{R=0.547\:\Omega}}}

Answered by TheValkyrie
6

Answer:

\bigstar{\bold{Resistance\:=\:0.55\:\Omega}}

Explanation:

\Large{\underline{\underline{\bf{Given:}}}}

  • Length of wire (l) = 100 m
  • Radius of wire (r) = 1 mm =0.001 m
  • Resistivity (ρ) = 1.72 × 10⁻⁸Ω m

\Large{\underline{\underline{\bf{To\:Find:}}}}

  • Resistance (R)

\Large{\underline{\underline{\bf{Solution:}}}}

→ The area of the wire = πr²

   Area = 3.14 ×0.001 × 0.001 = 3.14 × 10⁻⁶ m²

→ The equation for finding resistance is given by

   R\:=\:\dfrac{\rho\times l}{A}

→ Substituting the given datas, we get

   R\:=\:\dfrac{1.72\times 10^{-8}\times 100 }{3.14\times 10^{-6} }

   \boxed{\bold{Resistance\:=\:0.55\: \Omega}}

\Large{\underline{\underline{\bf{Notes:}}}}

→ Remember to convert all the given datas to the SI units before calculating.

→ Resistance is directly proportional to length of the conductor.

  R\:\propto\:l

→ Resistance is inversely proportional to area of cross section of conductor.

  R\:\propto\:\dfrac{1}{A}

Similar questions