Math, asked by pranavkumar9603, 2 months ago

the length of diagonal of cuboid is 10 cm and the sum of the length , breath, height, is 14 cm then find the total surface area of cuboid​

Answers

Answered by Anonymous
8

 \sf \tt \: L ength \: of \: Diagonal \: of \: cuboid =  \sf \: 10 \: cm \\   \:  \sqrt{ \: {l \: }^{2}  + b {}^{2}  + h {}^{2} }  =  \sf \: 10 \: cm \\ \boxed{ l {}^{2} + b {}^{2}   + h {}^{2}  = 100}

 \sf \: Sum \: of \:  \tt \: l  + b + h \sf \:  = 14 \: cm

We know

 \green{  \boxed{\red{(a + b + c) {}^{2}  =  \sf \: a {}^{2}  + b {}^{2} + c {}^{2}   + 2 \: ab + 2bc + 2ac}}}

According to this Formula

(l+b+h) ² = l²+ b²+ h² +2lb +2 bh +2lh

 \sf(14) { }^{2}  = 100 + 2(lb + bh + lh) \\  \sf \: 2(lb + bh + lh) = 14 {}^{2}  - 100 \\   : \implies196 - 100 \\  \longrightarrow \green{96}

Total Surface Area of Cuboid

= 2(lb + bh + lh)

  \implies \boxed{ \green{96 \: cm {}^{2} }}

_______________

Note : Slide to left to view full Solution !!

••••♪♪

Similar questions