Math, asked by hiralpatel291084, 6 months ago

the length of diagonal of ⬛ square is 50 cm .. find the perimeter of square ​


nirbhaypaldlw: Pythagoras theorem se sides nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo aur fhir perimeter nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo aur fhir perimeter nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo aur fhir perimeter nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo
nirbhaypaldlw: Pythagoras theorem se sides nikal lo
nirbhaypaldlw: sorry vo net nahi chal raha tha

Answers

Answered by ALTAMASH1617V
3

x square+ x square=50

2x square =50

x square =50/2

x =25root

x=5

Answered by Anonymous
17

Given:

↬The length of diagonal of square is 50 cm.

To Find:

➺The perimeter of square

Solution:

here we use the formula:

\sf : ⟹  \blue{{side}^{2}  +  {side}^{2}  = diagonal}

let's start.!

\sf : ⟹ {s}^{2}  +  {s}^{2}  = 50 \:  \\  \\ \sf : ⟹2 {s}^{2}  = 50  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf : ⟹ {s}^{2}   =  \cancel \frac{50}{2} \:    \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf : ⟹ {s}^{2}  = 25  \:  \:  \:  \:   \:  \:  \:  \:  \:  \\  \\ \sf : ⟹side =  \sqrt{25}  \:   \\  \\ \sf : ⟹side = \pink{ 5cm} \:

 \sf{ \red{ \underbrace{ \: perimeter \: of \: a \: square = 4 \times side}}}

\sf : ⟹perimeter = 4 \times 5 \\  \\ \sf : ⟹perimeter = 20cm

\blue{ \underline{ \boxed{ \pink{ \mathfrak{ \therefore \: perimeter \: of \: the \: square = 20cm}}}}}

hope this helps.!!

Similar questions