Math, asked by prettymuch5136, 1 year ago

The length of diagonals of a rhombus are 24cm and 10 cm find the side of a rhombus

Answers

Answered by Rashmi4444
10

here 's ur answer..

hope it is helpful to you..

Attachments:
Answered by thebrainlykapil
92

Given :

  • First Diagonal of Rhombus = 24cm
  • Second Diagonal of Rhombus = 10cm

 \\

To Find :

  • Side of Rhombus

 \\

Solution :

✰ As we know that, In a Rhombus, diagonal perpendicularly bisect each other. So we will use Pythagoras Theorem to find the side of Rhombus.

Using Pythagoras theorem :

 {:} \longrightarrow \sf{\sf{(Length \: of \: Side)^{2}\: = \: \bigg[\dfrac{1}{2}(d_{1})\bigg]^{2}   \:  +  \: \bigg[\dfrac{1}{2}(d_{2})\bigg] ^{2}}}\\

 {:} \longrightarrow \sf{\sf{(Length \: of \: Side)^{2}\: = \: \bigg[\dfrac{1}{2}(24)\bigg]^{2}   \:  +  \: \bigg[\dfrac{1}{2}(10)\bigg] ^{2}}}\\

 {:} \longrightarrow \sf{\sf{(Length \: of \: Side)^{2}\: = \: \bigg[\dfrac{1}{ \cancel2} \:  \times  \: \cancel{ 24}\bigg]^{2}   \:  +  \: \bigg[\dfrac{1}{ \cancel2} \:   \times  \:  \cancel{10}\bigg] ^{2}}}\\

 {:} \longrightarrow \sf{\sf{(Length \: of \: Side)^{2}\: = \: (12)^{2}   \:  +  \: (5)^{2}}}\\

 {:} \longrightarrow \sf{\sf{(Length \: of \: Side)^{2}\: = \: 144  \:  +  \: 25}}\\

 {:} \longrightarrow \sf{\sf{(Length \: of \: Side)^{2}\: = \: 169}}\\

 {:} \longrightarrow \sf{\sf{Length \: of \: Side\: = \:  \sqrt{169} }}\\

 {:} \longrightarrow \sf \red {\underline  \green{\boxed{\sf \blue{Length \: of \: Side\: = \:  13 }}}}\\

Thus Side of Rhombus is 13cm

________________

Similar questions