Math, asked by sanghudilpreet, 9 months ago

The length of diagonals of Rhombus is 10 m and 38 m. Find the area of rhombus.​

Answers

Answered by TheVenomGirl
6

\huge\bold{\underline{\sf{\pink{Answer :-}}}}

  • Area of the rhombus is 190 m²

\huge\bold{\underline{\sf{\red{Explanation :-}}}}

  • Length of diagonal p = 10 m
  • Length of diagonal q = 38 m

So,

 \implies{ \boxed{ \boxed{ \sf{ \: Area = \dfrac{ p \times q}{2} }}}} \\ \\   \implies \sf \:  \frac{10 \times 38}{2} \\    \\\implies\sf\frac{380}{2} \\  \\  \implies \sf \: 190 \:  {m}^{2}

Therefore, area of rhombus is 190 m².

Answered by InfiniteSoul
2

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

  • The length of diagonals of Rhombus is 10 m and 38 m. Find the area of rhombus.

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Diagonal 1 of tho rhombus = 10m
  • Diagonal 2 of the rhombus = 38m

\sf{\bold{\blue{\underline{\underline{To\:find}}}}}

  • Area of the rhombus = ????

\sf{\bold{\purple{\underline{\underline{Explanation}}}}}

\sf{\bold{\red{\boxed{area = \dfrac{1}{2} \times diagonal_1 \times diagonal_2}}}}

\sf\implies area = \dfrac{1}{\cancel 2}\times \cancel{10}\times 38

\sf\implies area = 5\times 38

\sf\implies area = 190m^2

\sf{\bold{\orange{\boxed{area = 190meter^2 }}}}

___________❤

Similar questions