Math, asked by ronak27420, 19 days ago

The length of each side of an equilateral triangle of area 4√3 cm² is

4 cm

5 cm

√3/4 cm

3 cm

Answers

Answered by MissVirius
7

Step-by-step explanation:

Given : area of an equilateral triangle is 4√3 cm².

To find :  Length of each side of an equilateral triangle.

We will find the length of each side of an equilateral triangle by using the formula for area of an equilateral triangle :  

Area of an equilateral triangle ,A =  √3a²/4

A =  √3a²/4

4√3 = √3a²/4

4√3 × 4 = √3a²

16√3 = √3a²

a² = (16√3)/√3

a² = 16

a = √16

a = 4 cm

Hence, the length of each side of an equilateral triangle is 4 cm.

Option (A) 4 cm is correct.

HOPE THIS ANSWER WILL HELP YOU…..

Similar questions :

The sides of a triangle are 50 cm, 78 cm and 112 cm. The smallest altitude is

A. 20 cm

B. 30 cm

C. 40 cm

D. 50 cm

https://brainly.in/question/15908624

The base of an isosceles right triangle is 30 cm. Its area is

A. 225 cm²

B. 225 √3 cm²

C. 225 √2 cm²

D. 450 cm²

https://brainly.in/question/15908619

Answered by Anonymous
2

Answer:

Question :

The length of each side of an equilateral triangle of area 4√3 cm² is

  • »» 4 cm
  • »» 5 cm
  • »» √3/4 cm
  • »» 3 cm

 \rule{300}{1.5}

Solution :

Here we have given that the area of equilateral triangle is 4√3 cm² and we need to find the each side of equilateral triangle. So, we'll use area of equilateral triangle formula :

{\longrightarrow{\small{\rm{Area_{(Equilateral Triangle)} =  \dfrac{\sqrt{3}}{4} \times  {(a)}^{2}}}}}

Now, for finding the each side of equilateral triangle substituting all the given values in the formula :

\begin{gathered} \quad{\longrightarrow{\rm{Area_{(Equilateral Triangle)} =  \dfrac{\sqrt{3}}{4} \times  {(a)}^{2}}}}\\\\\quad{\longrightarrow{\rm{Area_{(Equilateral Triangle)} =  \dfrac{\sqrt{3}}{4} \times  {(side)}^{2}}}}\\\\{\longrightarrow{\rm{4\sqrt{3}  =  \dfrac{\sqrt{3}}{4} \times  {(side)}^{2}}}}\\\\{\longrightarrow{\rm{{(side)}^{2} = 4\sqrt{3} \times \frac{4}{\sqrt{3}}}}}\\\\ {\longrightarrow{\rm{{(side)}^{2} = 4 \cancel{\sqrt{3}} \times \frac{4}{\cancel{\sqrt{3}}}}}}\\\\ {\longrightarrow{\rm{{(side)}^{2} =4 \times 4}}}\\\\ {\longrightarrow{\rm{{(side)}^{2} =16}}}\\\\\quad{\longrightarrow{\rm{(side) = \sqrt{16}}}}\\\\ \quad{\longrightarrow{\rm{(side) = 4 \: cm}}} \\\\\quad\bigstar \: {\underline{\boxed{\sf{\red{side= 4 \: cm}}}}}\end{gathered}

Hence, the lenght of each side of equilateral is 4 cm.

So, the option (1) 4 cm is the correct answer. ☑

 \rule{300}{1.5}

Learn More :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Triangle:-}\\ \\ \star\sf Triangle \:area = \dfrac{1}{2}\times b \times h\\ \\ \star\sf Triangle \: perimeter=a+b+c\\\\ \star\sf Scalene\:\triangle=\sqrt{s (s-a)(s-b)(s-c)}\\\\\star\sf Equilateral\: \triangle\:area = \dfrac{\sqrt{3}}{4}\times{side}^{2}\\\\\star\sf Equilateral \:\triangle\:perimeter = 3 \times side\\\\\star\sf Isosceles\: \triangle\:area= \dfrac{3}{4}\sqrt{{4b}^{2}-{a}^{2}}\\\\\star\sf Isosceles\:\triangle\:perimeter=a+2b\end{minipage}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\underline{\rule{220pt}{3.5pt}}

Attachments:
Similar questions