Math, asked by hemabisht8211, 3 months ago

the length of major axis of the ellipse 4x^2 + y^2 = 400 is​

Answers

Answered by hiranmoypati9
3

cant get to your question

Answered by Raftar62
2

 \bold{Given: \: 4 {x}^{2} +  {y}^{2} = 400 \: is \: equation \: of \: an \: ellipse.} \\  \bold{The \: standard \: form \: of \: equation \: of \: an \: ellipse \: is \:  \frac{ {x}^{2} }{ {a}^{2} } +  \frac{ {y}^{2} }{ {b}^{2} } = 1.} \\  \bold{So \: divide \: by \: 400.then} \\  \bold{ \frac{4 {x}^{2} }{400} +  \frac{ {y}^{2} }{400}  =  \frac{400}{400}. } \\  \\  \bold{ \implies{ \frac{ {x}^{2} }{ (\sqrt{100} )^{2} }  +  \frac{ {y}^{2} }{ {( \sqrt{400} })^{2} }  = 1.}}   \\  \\ \bold{ \implies{ \frac{ {x}^{2} }{ (10 )^{2} }  +  \frac{ {y}^{2} }{ (20)^{2} }  = 1.}}   \\   \bold{Now \: it \: seems \: like \: the \: standard \: form \: of \: equation \: of \: an \: ellipse. \: so \:compare \: with \: standard \: form \: of \: equation. \: then } \\  \bold{a = 10 \: and \:b \:  = 20. \:  \therefore{major \: axis \: will \: be \: 20 \: units.}}

Similar questions