Math, asked by parishkritbantawa, 19 days ago

the length of of a rectangular Garden is two times its breadth if the perimeter of the garden is 72cm find the length and breadth of the garden ​

Answers

Answered by Anonymous
19

Given :

  • Length of a rectangle is two times its breadth .
  • Perimeter of the Triangle is 72 cm

 \\ \\

To Find :

  • Length and Breadth = ?

 \\ \\

SolutioN :

~ Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Perimeter = 2 \bigg(Length + Breadth \bigg) }}}}}

Here :

  • Length = 2y
  • Breadth = y

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Value of y :

 {\dashrightarrow{\qquad{\sf{ Perimeter = 2 \bigg(Length + Breadth \bigg) }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 72 = 2 \bigg(2y + y \bigg) }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 72 = 2 \times 3y }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 72 = 6y }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \dfrac{72}{6} = y }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \cancel\dfrac{72}{6} = y }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\red{\pmb{\frak{ y = 12 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Dimensions :

  • Length = 2y = 2(12) = 24 cm
  • Breadth = y = 12 cm

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❛❛ Length of the Rectangle is 24 cm and its breadth is 12 cm . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by Anonymous
19

\underline{\underline{\large\bf{Given:-}}}

  • \textsf{Perimeter of rectangular garden} \sf = 72\;cm

\\

\underline{\underline{\large\bf{Assumptions:-}}}

  • \textsf{let the length of rectangle }\sf= x

\red{\therefore}\:\textsf{Breadth of rectangular garden }\sf =2x

\quad\quad\quad \sf (Since \:length \: is \:two \:times)

\\

\underline{\underline{\large\bf{To\: Find:-}}}

  • \textsf{Length of the rectangular garden} \sf
  • \textsf{Breadth of the rectangular garden} \sf

\\

\underline{\underline{\large\bf{Solution:-}}}

\underline{\tt{Formula\:Applied}}

\green{ \underline { \boxed{ \sf{Perimeter\;of\: the\:garden= 2\times (l+b)}}}}

where

  • l = length
  • b = breadth

\\

\underline{\tt\pink{Putting \:Values-}}

\begin{gathered}\\\quad\longrightarrow\quad \sf Perimeter\;of\: the\:garden= 2\times (l+b)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 72 = 2\times (x+2x)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 72 = 2\times 3x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 72 = 6x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf \frac{\cancel{72}}{\cancel{6}} = x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\boxed{ {\sf x = 12 cm}} \\\end{gathered}

\\

\large{\red\bull}\; \sf length \:of\: rectangle = x

\quad\quad\quad\quad\quad\quad\quad\quad\quad\sf = 12\:cm

\large{\green\bull}\; \sf breadth \:of\: rectangle = 2x

\quad\quad\quad\quad\quad\quad\quad\quad\quad\sf =2\times 12\:cm

\quad\quad\quad\quad\quad\quad\quad\quad\quad\sf =24 \;cm

Similar questions