The length of one of the diagonals of a field in the form of quadrilateral is 54m. The perpendicular distances of the other two vertices from this diagonal are 14m and 9 m. Find the area of field.
Answers
Answer:
Area = 621 m²
Step-by-step explanation:
Given
BD = 54 m
AM = 14 m
CN = 9 m
Area of the field = Sum of area of the 4 triangles
i.e. ΔAMD + ΔAMB + ΔCNB + ΔCND
= ( x DM x AM) + ( x BM x AM) + ( x BN x NC) + ( x DN x NC)
= ( x DM x 14) + ( x BM x 14) + ( x BN x 9) + ( x DN x 9)
= (7 DM) + (7 BM) + ( BN) + ( DN)
Replacing
BM = BD - DM = 54 - DM
and
DN = DB - NB = 54 - NB
= (7 DM) + (7 (54 - DM)) + ( BN) + ( (54 - NB))
= (7 DM) + (378 - 7 DM) + ( BN) + (243 - NB)
= 7 DM + 378 - 7 DM + BN + 243 - NB
= 378 + 243
= 621
Answer:
Step-by-step explanation:
Given
BD = 54 m
AM = 14 m
CN = 9 m
Area of the field = Sum of area of the 4 triangles
i.e. ΔAMD + ΔAMB + ΔCNB + ΔCND
= (\frac{1}{2}
2
1
x DM x AM) + (\frac{1}{2}
2
1
x BM x AM) + (\frac{1}{2}
2
1
x BN x NC) + (\frac{1}{2}
2
1
x DN x NC)
= (\frac{1}{2}
2
1
x DM x 14) + (\frac{1}{2}
2
1
x BM x 14) + (\frac{1}{2}
2
1
x BN x 9) + (\frac{1}{2}
2
1
x DN x 9)
= (7 DM) + (7 BM) + (\frac{9}{2}
2
9
BN) + (\frac{9}{2}
2
9
DN)
Replacing
BM = BD - DM = 54 - DM
and
DN = DB - NB = 54 - NB
= (7 DM) + (7 (54 - DM)) + (\frac{9}{2}
2
9
BN) + (\frac{9}{2}
2
9
(54 - NB))
= (7 DM) + (378 - 7 DM) + (\frac{9}{2}
2
9
BN) + (243 - \frac{9}{2}
2
9
NB)
= 7 DM + 378 - 7 DM + \frac{9}{2}
2
9
BN + 243 - \frac{9}{2}
2
9
NB
= 378 + 243
= 621.