Math, asked by kushwahvikash690, 1 month ago

the length of perpendicular from origin to x +√3y+7=o is​

Answers

Answered by Thatsomeone
20

 \tt Lenght\:of\: perpendicular\:from\:any\:point \\ \tt ({x}_{1},{y}_{1}) \: to \:the\:line\:ax+by+c=0 \: is \\ \\ \tt \boxed{\bold{\underline{\green{\tt D = \frac{a{x}_{1}+b{y}_{1}+c}{\sqrt{{a}^{2}+{b}^{2}}} }}}} \\ \\ \tt So\: perpendicular\: distance\:of\:origin\:i.e \: (0,0) \\ \tt from line x + \sqrt{3}y+7=0 \:is \\ \\ \tt D = \frac{0+\sqrt{3}(0)+7}{\sqrt{1+3}} \\ \\ \tt \implies D = \frac{7}{2} \\ \\ \tt \therefore \boxed{\bold{\underline{\red{\tt D = \frac{7}{2} = 3.5 }}}}

Answered by Anonymous
0

Answer:

D=7/2

= 3.5

hope this is helpful for you

Similar questions