Math, asked by rajnibedicbse, 11 months ago

The length of sides of A triangle are 4,6,8cm. Find the length of the altitude from the opposite vertex to the side of length 8cm.

Answers

Answered by zahaansajid
1

Semi perimeter = (4+6+8)/2 = 9

Area =

 \sqrt{s(s - a)(s - b)(s - c)}  \\  =  \sqrt{9(9 - 4)(9 - 6)(9 - 8)}  \\  =  \sqrt{9 \times 5 \times 3 \times 1}  \\  = 3 \sqrt{15}

Area = ½ Base ×Height

3√15 = ½ × 8 × Height

Height = 3√15/4 = 2.9cm ≈3cm

Hope this is helpful to you

Pls mark as brainliest

Follow me and I'll follow back

Answered by silentlover45
6

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

\underline\mathfrak{Given:-}

  • Length of sides of triangle are 4cm, 6cm, and 8cm

\large\underline\mathfrak{To \: find:-}

  • length of perpendicular....?

\large\underline\mathfrak{Solutions:-}

\: \: \: \: \: \pink{\star \: \: \: Area \: \: of \: \: triangle \: \: by \: \: heroes's \: \: formula:-}

\: \: \: \: \: \orange{\therefore \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}

  • a ⇢ 4cm

  • b ⇢ 6cm

  • c ⇢ 8cm

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{{4} \: + \: {6} \: + \: {8}}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{18}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: {9}

\: \: \: \: \: \pink{\star \: \: \: Area \: \: of \: \: triangular \: \: field:-}

\: \: \: \: \: \leadsto \: \: \sqrt{{9} \: ({9} \: - \: {4}) \: ({9} \: - \: {6}) \: ({9} \: - \: {8})}

\: \: \: \: \: \leadsto \: \: \sqrt{{9} \: \times \: {5} \:  \times \: {3} \: \times  \: {1}}

\: \: \: \: \: \leadsto \: \: \sqrt{135} \: {cm}^{2}

\: \: \: \: \: \pink{\star \: \: \: Area \: \: of \: \: triangle \: \: \leadsto \: \: \frac{1}{2} \: \times \: base \: \times \: height.}

✰ Let the height be h m.

\: \: \: \: \: Area \: \: of \: \: triangle \: \: = \: \: \frac{1}{2} \: \times \: {8} \: \times \: h.

\: \: \: \: \: \leadsto \: \: {1680} \: \: = \: \: \frac{1}{2} \: \times \: {50} \: \times \: h.

\: \: \: \: \: \leadsto \: \: {\sqrt{135}} \: \: = \: \: {4} \: \times \: h.

\: \: \: \: \: \leadsto \: \: h \: \: = \: \: \frac{\sqrt{135}}{4}

\: \: \: \: \: \leadsto \: \: h \: \: = \: \: \frac{11.61}{4}

\: \: \: \: \: \leadsto \: \: h \: \: = \: \: {2.90cm}

\: \: \: \: \: \pink{\star \: \: \: So, \: \: the \: \: length \: \: of \: \: perpendicular \: \: {2.90cm}}

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

Similar questions