Math, asked by kingrock1114, 3 months ago

The length of tangent from a point A at distance 41 cm from the centre of the circle is
Find the radius of the circle​

Answers

Answered by AestheticSky
31

Correct Question:-

The length of tangent from a point A at distance 5 cm from the centre of the circle is 5 cm. Find the radius of the circle

Required Solution:-

\sf\purple{By \:Pythagoras \:theorem}

\implies \sf OA² = OB²+AB²

\implies \sf 5² = OB²+4²

\implies \sf 25-16 = OB²

\implies \sf 9 = OB²

\implies \sf OB = √9 = 3

hence, radius is 3 cm.

Attachments:
Answered by Anonymous
73

Corrected Question :

  • The length of tangent from a point A at distance 5 cm from the centre of the circle is 5 cm. Find the radius of the circle ?

\\

A N S W E R :

  • Radius of the circle is 3 cm.

~~~~~

Given :

  • The length of tangent from a point A at distance 5 cm from the centre of the circle is 5 cm.

\\

To find :

  • Find the radius of the circle ?

\\

\large\star As we know that,

\large\dagBy Using Pythagoras theorem :

  • \boxed{\bf{(Hypotenuse)^2 \:= \; (Height)^2 \:+ \: (Base)^2}}

\\

Solution :

  • Let the circle be with center O

  • Since AB is tangent

  • Hence OB ⊥ AB

  • \angleOBA = 90°

  • So, ∆OAB is a right triangle

Given Substituting the values,

:\implies{\sf{AO^2 \:=\:OB^2\:+ \; AB^2}}

\\

~~~~~:\implies{\sf{5^2 \:=\:OB^2\:+ \; 4^2}}

\\

~~~~~~~~~~:\implies{\sf{OB^2 \:=\:25\:-\; 16}}

\\

~~~~~~~~~~~~~~~:\implies{\sf{OB^2 \:=\;9}}

\\

~~~~~~~~~~~~~~~~~~~~:\implies{\sf{OB\:=\; \sqrt{9}}}

\\

~~~~~~~~~~~~~~~~~~~~~~~~~:\implies{\sf{OB\:=\; \sqrt{3^2}}}

\\

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{OB\:=\; 3}}}}}

~~~~~

Hence,

  • {\underline{\sf{Radius\: of\: the\; circle\:is\; \bf{OB\:=\:3\:cm}.}}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Proved!}}}}

~~~~~~~~~~~~~~~ ____________________

Attachments:
Similar questions