Math, asked by ranveersssolanki05, 29 days ago

the length of the arc of a circle of radian 6 cm subtending an angle of 30' at the centre of the circle is?​

Answers

Answered by rinamehta122
1

Answer:

Appropriate Question :-

The area of the base of a conical solid is 2464 cm² and its volume is 17248 cm³. Find the curved surface area of the solid.

Given :-

The area of the base of a conical solid is 2464 cm² and its volume is 17248 cm³.

To Find :-

What is the curved surface area of the solid.

Formula Used :-

\clubsuit♣ Volume Of Cone Formula :

\mapsto \sf\boxed{\bold{\pink{Volume_{(Cone)} =\: \dfrac{1}{3}{\pi}r^2h}}}↦Volume(Cone)=31πr2h

\clubsuit♣ Area of Circle Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{Area_{(Circle)} =\: {\pi}r^2}}}\\\end{gathered}↦Area(Circle)=πr2

\clubsuit♣ Curved Surface Area Of Cone Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{C.S.A_{(Cone)} =\: {\pi}rl}}}\\\end{gathered}↦C.S.A(Cone)=πrl

where,

π = pie or 22/7

r = Radius

h = Height

l = Slant Height

Solution :-

First, we have to find the radius :

Given :

Area = 2464 cm²

According to the question by using the formula we get,

\implies \sf \dfrac{22}{7} \times r^2 =\: 2464⟹722×r2=2464

\implies \sf r^2 =\: \dfrac{2464 \times 7}{22}⟹r2=222464×7

\implies \sf r^2 =\: \dfrac{\cancel{17248}}{\cancel{22}}⟹r2=2217248

\implies \sf r^2 =\: 784⟹r2=784

\implies \sf r =\: \sqrt{784}⟹r=784

\implies \sf\bold{\green{r =\: 28\: cm}}⟹r=28cm

Now, we have to find the height :

Given :

Volume = 17248 cm³

Radius = 28 cm

According to the question by using the formula we get,

\implies \sf \dfrac{1}{3} \times \dfrac{22}{7} \times (28)^2 \times h =\: 17248⟹31×722×(28)2×h=17248

\implies \sf \dfrac{22}{21} \times 784 \times h =\: 17248⟹2122×784×h=17248

\implies \sf \dfrac{17248}{21} \times h =\: 17248⟹2117248×h=17248

\implies \sf h =\: \dfrac{\cancel{17248} \times 21}{\cancel{17248}}⟹h=1724817248×21

\implies \sf \bold{\green{h =\: 21\: cm}}⟹h=21cm

Now, we have to find the value of slant height :

As we know that,

\clubsuit♣ Pythagoras Theorem Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{l =\: \sqrt{r^2 + h^2}}}}\\\end{gathered}↦l=r2+h2

where,

l = Slant Height

r = Radius

h = Height

Given :

Radius = 28 cm

Height = 21 cm

According to the question by using the formula we get,

\begin{gathered}\implies \sf l =\: \sqrt{(28)^2 + (21)^2}\\\end{gathered}⟹l=(28)2+(21)2

\implies \sf l =\: \sqrt{784 + 441}⟹l=784+441

\implies \sf l =\: \sqrt{1225}⟹l=1225

\implies \sf\bold{\green{l =\: 35\: cm}}⟹l=35

Similar questions