Math, asked by kratikadixit, 16 days ago

The length of the base and the height of a triangle are in the ratio 4: 5. If the area of the triangle is 40sq m. Find the lengths of its base and height. ​

Answers

Answered by sethrollins13
51

Given :

  • The length of the base and the height of a triangle are in the ratio 4: 5.
  • Area of Triangle is 40 m² .

To Find :

  • Length of base and height .

Solution :

\longmapsto\tt{Let\:Base\:be=4x}

\longmapsto\tt{Let\:Height\:be=5x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Triangle=\dfrac{1}{2}\times{b}\times{h}}

Putting Values :

\longmapsto\tt{40=\dfrac{1}{2}\times{4x}\times{5x}}

\longmapsto\tt{40\times{2}=20\:{x}^{2}}

\longmapsto\tt{80=20{x}^{2}}

\longmapsto\tt{{x}^{2}=\cancel\dfrac{80}{20}}

\longmapsto\tt{{x}^{2}=4}

\longmapsto\tt\bf{2=x}

Value of x is 2 .

Therefore :

\longmapsto\tt{Length\:of\:Base=4(2)}

\longmapsto\tt\bf{8\:m}

\longmapsto\tt{Length\:of\:Height=5(2)}

\longmapsto\tt\bf{10\:m}

Answered by Anonymous
38

Given :

  • Area = 40 cm²
  • Ratio of Base and Height = 4:5

 \\ \\

To Find :

  • Base and Height = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Triangle)}} = \dfrac{1}{2} \times Base \times Height }}}}}

 \\ \\

 \maltese Let the Ratios :

  • Base = 4y
  • Height = 5y

 \\ \\

 \maltese Deriving the Value of y :

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = \dfrac{1}{2} \times Base \times Height  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 40 = \dfrac{1}{2} \times 4y \times 5y  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 40 = \dfrac{1}{2} \times {20y}^{2}  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 40 = \dfrac{1}{\cancel2} \times \cancel{20y}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 40 = 1 \times {10y}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \dfrac{40}{10} = {y}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \cancel\dfrac{40}{10} = {y}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 4 = {y}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \sqrt{4} = y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\frak{ y = 2 }}}}} \; {\purple{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \maltese Calculating the Dimensions :

  • Base = 4y = 4(2) = 8 cm
  • Height = 5y = 5(2) = 10 cm

 \\ \\

 \therefore \; Base of the Triangle is 8 cm and its Height is 10 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions