Math, asked by rajc5194, 1 year ago

The length of the base of an isosceles triangle is 10 cm. If the length of the altitude is 1 cm shorter than the equal sides, find the area of the triangle.

Answers

Answered by RvChaudharY50
7

Given :- The length of the base of an isosceles triangle is 10 cm. If the length of the altitude is 1 cm shorter than the equal sides, find the area of the triangle. ?

Solution :-

we know that,

  • Median of an isosceles ∆ is perpendicular to the base.

so,

→ CD = DB = 5 cm. (Median divides the base in two equal parts.)

and,

→ ∠ADC = 90° .

now, in ∆ADC, we have,

→ AD² + CD² = AC² (by pythagoras theorem.)

Let us assume that, Length of altitude AD is x cm.

then,

→ AC = (x + 1) cm.

putting values now , we get,

→ x² + 5² = (x + 1)²

→ x² + 5² = x² + 2x + 1

→ 25 = 2x + 1

→ 25 - 1 = 2x

→ 2x = 24

→ x = 12 cm.

therefore,

→ Area of the ∆ABC = (1/2) * Base * Altitude = (1/2) * 10 * 12 = 60 cm². (Ans.)

Learn more :-

In ABC, AD is angle bisector,

angle BAC = 111 and AB+BD=AC find the value of angle ACB=?

https://brainly.in/question/16655884

Attachments:
Answered by mathdude500
3

\large\underline\blue{\bold{Given \:  Question :-  }}

The length of the base of an isosceles triangle is 10 cm. If the length of the altitude is 1 cm shorter than the equal sides, find the area of the triangle.

─━─━─━─━─━─━─━─━─━─━─━─━─

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{base \: of \: isosceles \: triangle \:  =  \: 10 \: cm} \\ &\sf{altitude \: is \: 1 \: shorter \: than \: equal \: side} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf To \:  find - \begin{cases} &\sf{area \: of \: triangle}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Formula-   \begin{cases} &\sf{{Area\:of\:triangle= \frac{1}{2} \times base \times height}} \\ &\sf{ {(hyp.)}^{2} =  {(base)}^{2}  +  {(perpendicular)}^{2}  } \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 1 }}

☆ Let us assume that ABC is an isosceles triangle with base BC and equal sides be AB and AC.

☆ The base of an isosceles triangle = BC = 10 cm

☆ Let the equal sides AB and AC of isosceles triangle be x cm.

\sf \:  ⟼ \: ∴ AB \:  =  \: AC  \: =  \: x  \: cm

\sf \:  ⟼ Now,  \: altitude  \: of \:  triangle  \: AD  \: = \:  (x - 1)  \: cm 

☆ We know that, in an isosceles triangle altitude from the opposite vertex will always bisect the base.

\sf \:  ⟼ \: So, BD \:  = \:  DC \:  = \: \dfrac{1}{2} \times BC = \: 5 \: cm

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2}}

\sf \:  ⟼Now,  \: In \:  Δ  \: ABD

\sf \:  ⟼ \: by  \: pythagoras \:  theorem,

\sf \:  ⟼ \:  {AB}^{2}  \:  =  {BD}^{2}  \: \: +  \:  {AD}^{2}

\sf \:  ⟼ {x}^{2}  =  {(x - 1)}^{2}  +  {5}^{2}

\sf \:  ⟼ \:  {x}^{2}  =  {x}^{2}  + 1 - 2x + 25

\sf \:  ⟼ \: 0  = 26 - 2x

\sf \:  ⟼ \: 2x = 26

\bf\implies \: \: x \:  =  \: 13 \: cm

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 3 }}

\bf \:  ⟼  \: So  \: dimensions  \: are  \:

\sf \:  ⟼ \: AB \:  =  \: x \:  =  \: 13 \: cm

\sf \:  ⟼ \: AD \:  =  \: x \:  - 1 =  \: 13 - 1 \: =  12 \: cm

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 4 }}

\bf \:  ⟼  \:  area \:  of  \triangle \: ABC = \: \dfrac{1}{2}  \times AD \times BC

\bf \:  ⟼  \:  area \:  of  \triangle \: ABC = \: \dfrac{1}{2}  \times 10 \times 12

\bf \:  ⟼  \:  area \:  of  \triangle \: ABC = \:5 \times 12 = 60 {cm}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  Explore \:  more } ✍

{\large{\bold{\rm{\underline{Additional \; knowledge}}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle = \: \pi r^{2}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Circumference \: of \: circle \: = \: 2 \pi r}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: square \: = \: Side \times Side}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: triangle \: = \: \dfrac{1}{2} \times breadth \times height}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: paralloelogram \: = \: Breadth \times Height}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle \: = \: \pi b^{2}}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: triangle \: = \: (1st \: + \: 2nd \: + 3rd) \: side}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: paralloelogram \: = \: 2(a+b)}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: cuboid \: = \: 2(l \times b + b \times h + l \times h}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto LSA \: of \: cuboid \: = \: 2h(l+b)}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cuboid \: = \: L \times B \times H}}} \\ </p><p>\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diagonal \: of \: cube\: = \: \sqrt 3l}}} \\

Attachments:
Similar questions
Math, 7 months ago