Math, asked by deyp0483, 5 days ago

the length of the diagonals of a rhombus was 24m and 10m.then find (1) perimeter and (2) area .​

Answers

Answered by Anonymous
33

\tt \blue{Solution:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{Given:- }

\footnotesize\tt{d1 = 10cm }

\footnotesize\tt{d2 = 24cm }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Diagonals meet at the center and forms right angle triangles.

Now, By Pythagoras theorem

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{Length \:  of  \: the \:  base =  \:  \frac{10}{2}cm }

\footnotesize\tt{Length \:  of  \: the \:  base =  \:  \cancel{ \frac{10}{2}}cm }

\footnotesize\tt{Length \:  of  \: the \:  base =  \: 5cm }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{Length \:  of  \: the \:  height =  \:  \frac{24}{2}cm }

\footnotesize\tt{Length \:  of  \: the \:  height =  \:   \cancel\frac{24}{2}cm }

\footnotesize\tt{Length \:  of  \: the \:  height =  \:   12cm }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{{Hypotenuse}^{2} =  \:   {side}^{2}  +  {side}^{2}   }

\footnotesize\tt{{Hypotenuse}^{2} =  \:    {5}^{2}  +   {12}^{2} }

\footnotesize\tt{{Hypotenuse}^{2} =  \:    25  +  144 }

\footnotesize\tt{{Hypotenuse}^{2} =  \:  169}

\footnotesize\tt{Hypotenuse =  \:  \sqrt{169} }

\footnotesize\tt{Hypotenuse =  \: 13}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{Perimeter \:  of \:  square = 4  \times side}

\footnotesize\tt{Perimeter \:  of \:  square = 4  \times 13cm}

\footnotesize\tt{Perimeter \:  of \:  square = 52cm}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{Area \:  of \:  square = \:  \frac{1}{2}  \times d1 \times d2}

\footnotesize\tt{Area \:  of \:  square = \:  \frac{1}{2}  \times10 \times 24}

\footnotesize\tt{Area \:  of \:  square = \:  \frac{1}{ \cancel2}  \times \cancel{10} \times 24}

\footnotesize\tt{Area \:  of \:  square = \:  5 \times  24}

\footnotesize\tt{Area \:  of \:  square = \:   {120cm}^{2} }

Similar questions