The length of the focal chord of the parabola y² = 4ax at a distance b from the vertex is c, then
1). 2a² = bc 2) a³ = b²c
3) ac = b² 4) b²c = 4 a³
Answers
Answered by
99
Ans: (4).
Parabola P : y² = 4ax -- (1)
Vertex = O (0,0) Focus: F(a,0)
Let the Focal chord L be (y - 0) = m (x - a)
So y = m x - m a -- (2)
Given b = Distance of O from L.
=> b² = m² a² / (1+m²) --- (3)
Find intersections A(x1, y1), B(x2, y2) of P & L:
Eliminate y from (1) & (2):
m²x² -2am x + m²a² = 4a x
m² x² - 2 a( m+2) x + m² a² = 0 --- (3)
x1, x2 are the roots, x1+x2 = 2a (m+2)/m² ;; x1 x2 = a² -- (4)
Eliminate x from (1) & (2):
y = m (y²/4a) - m a
m y² - 4a y - 4a² m = 0 -- (5)
y1, y2 are the roots, y1+ y2 = 4a/m ;; y1 y2 = -4a² --- (6)
Now Length of focal chord = c = AB
c² = (x1-x2)² + (y1-y2)²
= (x1+x2)² - 4x1 x2 + (y1+y2)² - 4y1 y2
= 4a² (m⁴ + 4 + 4 m²) / m⁴ - 4a² + 16a²/m² + 16 a²
= 16 a² (m² + 1)²/m⁴
= 16 a² (a² / b²)² --- using (3)
=> b²c = 4 | a³ | , Modulus as "a" can be +ve or -ve.
Parabola P : y² = 4ax -- (1)
Vertex = O (0,0) Focus: F(a,0)
Let the Focal chord L be (y - 0) = m (x - a)
So y = m x - m a -- (2)
Given b = Distance of O from L.
=> b² = m² a² / (1+m²) --- (3)
Find intersections A(x1, y1), B(x2, y2) of P & L:
Eliminate y from (1) & (2):
m²x² -2am x + m²a² = 4a x
m² x² - 2 a( m+2) x + m² a² = 0 --- (3)
x1, x2 are the roots, x1+x2 = 2a (m+2)/m² ;; x1 x2 = a² -- (4)
Eliminate x from (1) & (2):
y = m (y²/4a) - m a
m y² - 4a y - 4a² m = 0 -- (5)
y1, y2 are the roots, y1+ y2 = 4a/m ;; y1 y2 = -4a² --- (6)
Now Length of focal chord = c = AB
c² = (x1-x2)² + (y1-y2)²
= (x1+x2)² - 4x1 x2 + (y1+y2)² - 4y1 y2
= 4a² (m⁴ + 4 + 4 m²) / m⁴ - 4a² + 16a²/m² + 16 a²
= 16 a² (m² + 1)²/m⁴
= 16 a² (a² / b²)² --- using (3)
=> b²c = 4 | a³ | , Modulus as "a" can be +ve or -ve.
kvnmurty:
click on red hearts thanks button box above pls
Similar questions