The length of the hypotenuse of a right triangle exceeds the length of its base by 2cm and exceeds twice the length of the altitude by 1cm. Find the length of each side of the triangle.
Answers
Answered by
274
Let hypotenuse be a
Given, base = a-2 ---------------- (1)
Given, altitude = (a-1)/2. ---------------- (2)
By Pythagoras theorem
a^2 = (a-2) + ((a-1)/2)^2
a^2 = (a^2-2a+1)/4 + a^2-4a+4
4a^2 = a^2-2a+1+4(a^2-4a+4)
4a^2 = a^2-2a+1+4a^2-16a+16
a^2 - 18a + 17 =0
(a-17)(a-1) = 0
a = 17
Substitute a = 17 in (2) we get
and lenght of each side = 17 - 1/2
= 16/2
= 8
Hope this helps!
Given, base = a-2 ---------------- (1)
Given, altitude = (a-1)/2. ---------------- (2)
By Pythagoras theorem
a^2 = (a-2) + ((a-1)/2)^2
a^2 = (a^2-2a+1)/4 + a^2-4a+4
4a^2 = a^2-2a+1+4(a^2-4a+4)
4a^2 = a^2-2a+1+4a^2-16a+16
a^2 - 18a + 17 =0
(a-17)(a-1) = 0
a = 17
Substitute a = 17 in (2) we get
and lenght of each side = 17 - 1/2
= 16/2
= 8
Hope this helps!
Answered by
227
Answer:
Step-by-step explanation:
Solution :-
Let the altitude of triangle be x cm.
Hypotenuse of triangle = 2x + 1
Base of triangle = 2x - 1.
According to the Question,
Using Pythagoras theorem,
⇒ (2x + 1)² = x² + (2x - 1)²
⇒ 4x² + 1 + 4x = x² + 4x² + 1 - 4x
⇒ x² - 8x = 0
⇒ x(x - 8) = 0
⇒ x = 0, 8 (Neglecting 0)
⇒ x = 8 cm
Altitude of triangle = x = 8 cm
Hypotenuse of triangle = 2x + 1 = 2(8) + 1 = 16 + 1 = 17 cm
Base of triangle = 2x - 1 = 2(18) - 1 = 16 - 1 = 15 cm.
Similar questions