Math, asked by Rani285, 1 year ago

The length of the hypotenuse of a right triangle exceeds the length of its base by 2cm and exceeds twice the length of the altitude by 1cm. Find the length of each side of the triangle.

Answers

Answered by siddhartharao77
274
Let hypotenuse be a

Given, base = a-2               ---------------- (1)

Given, altitude = (a-1)/2.       ---------------- (2)


By Pythagoras theorem

a^2 = (a-2) + ((a-1)/2)^2

a^2 = (a^2-2a+1)/4 + a^2-4a+4 

4a^2 = a^2-2a+1+4(a^2-4a+4)

4a^2 = a^2-2a+1+4a^2-16a+16

a^2 - 18a + 17 =0

(a-17)(a-1) = 0

a = 17

Substitute a = 17 in (2) we get

and lenght of each side = 17 - 1/2

                                         = 16/2

                                         = 8


Hope this helps!


Answered by VishalSharma01
227

Answer:

Step-by-step explanation:

Solution :-

Let the altitude of triangle be x cm.

Hypotenuse of triangle = 2x + 1

Base of triangle = 2x - 1.

According to the Question,

Using Pythagoras theorem,

(2x + 1)² = x² + (2x - 1)²

⇒ 4x² + 1 + 4x = x² + 4x² + 1 - 4x

⇒ x² - 8x = 0

⇒ x(x - 8) = 0

x = 0, 8 (Neglecting 0)

x = 8 cm

Altitude of triangle = x = 8 cm

Hypotenuse of triangle = 2x + 1 = 2(8) + 1 = 16 + 1 = 17 cm

Base of triangle = 2x - 1 = 2(18) - 1 = 16 - 1 = 15 cm.

Similar questions