Math, asked by sirishavulluri7264, 1 year ago

The length of the latus rectum of ellipse 4 x square + 9 y square is equal to 36

Answers

Answered by Sharvari8945
0
ur answer is - 139771

I hope it can help u as well

plzz mark me as brainliest

harsimransandhu56: hello ji
Sharvari8945: hlo
harsimransandhu56: how are you
Sharvari8945: fine
Sharvari8945: n u
harsimransandhu56: fine
harsimransandhu56: what are you doing
Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=\frac{8}{3}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies eqn \: of \: ellipse = 4 {x}^{2} +  {9y}^{2}   = 36} \\  \\ \red {\underline \bold{to \: find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt {:  \implies  {4x}^{2}  + 9 {y}^{2}  = 36} \\  \\    \tt{: \implies  \frac{4x^{2} }{36}  +  \frac{ 9{y}^{2} }{36} = 1 } \\  \\   \tt{ : \implies   \frac{ {x}^{2} }{ \frac{36}{4} }   +  \frac{ {y}^{2} }{ \frac{36}{9} }  = 1} \\  \\   \tt{: \implies  \frac{ {x}^{2} }{9}  +  \frac{ {y}^{2} }{4}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  9} \\   \\   \tt{\circ \:  {b}^{2}  = 4} \\  \\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 4 }{3} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  \frac{8  }{3} }}

Similar questions