Math, asked by Shikshyashree, 7 months ago

The length of the longest pole that can be placed on the floor of a room is 10m and the length of the longest pole that can be placed in the room is 10root2m. The height of the room is...?

Answers

Answered by spacelover123
314

Given

Hypotenuse ⇒ 10√2 m

Base ⇒ 10 m

_______________________________________

To Find

The Height.

_______________________________________

Solution

For this question, we must apply the Pythagorean Theorem.

Pythagorean Theorem ⇒ Base² + Height² = Hypotenuse²

Base ⇒ 10 m

Hypotenuse ⇒ 10√2 m

Height ⇒ x

Let's solve your equation step-by-step

10² + x² = (10√2)²

Step 1: Subtract 10² from both sides of equation.

⇒ 10² + x² = (10√2)²

⇒ 10² + x² - 10² = (10√2)² - 10²

⇒ x² = (10√2)² - 10²

⇒ x² = {10² × (√2)²} - 10²

⇒ x² = (100 × 2) - 100

⇒ x² = 200 - 100

⇒ x² = 100

⇒ x = √100

⇒ x = 10

∴ The height of the room is 10 m

_______________________________________

Answered by Anonymous
39

Answer:

Given:

  • Longest pole which can be placed on the floor = 10 m

  • Longest pole which can be placed in the room = 10√2 m

To find:

  • Height of the room

Solution:

Diagram :

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.4mm}\put(10.6,2.9){\large\sf{C}}\put(7.7,1){\large\sf{A}}\put(10.6,1){\large\sf{B}}\put(8,1){\line(1,0){2.5}}\put(10.5,1){\line(0,2){1.9}}\qbezier(8,1)(8.5,1.4)(10.5,2.9)\put(9,0.7){\sf{\large{10 m}}}\put(10.7,1.9){\sf{\large{ ? }}}\put(10.3,1){\line(0,1){0.2}}\put(10.3,1.2){\line(3,0){0.2}}\put(8,1){\circle*{.15}}\put(7.3,2){\sf{\large{West}}}\put(11.7,2){\sf{\large{East}}}\put(10,0){\sf{\large{South}}}\put(10,3.8){\sf{\large{North}}}\end{picture}

\underline{\bigstar\:\textsf{By Pythagoras Theorem :}}

</p><p>:\implies\sf (Hypotenuse)^2 = (Perpendicular)^2+(Base)^2\\\\\\:\implies\sf (AB)^2=(BC)^2+(AC)^2\\\\ :\implies\sf \: (AB)^2 \:  =  {10}^{2}  +(  { 10\sqrt{2} })^{2}  \\  \\ :\implies\sf \: (AB)^2 \:  = 100 + 200 \\  \\ :\implies\sf \: (AB)^2 \:  = 300 \\  \\ :\implies\sf \: AB\:   = 10 \sqrt{3}  \\

Similar questions