Math, asked by nasrinjamy, 2 months ago

The length of the minor arc AB of a circle ,centre o is 2 pi cm and the length of the major arc is 22 pi cm. A) find the radius B) the acute angle AOB​

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Let assume that radius of circle be 'r' cm.

According to statement,

It is given that,

↝ Length of minor arc of circle = 2 pi cm

↝ Length of major arc of circle = 22 pi cm

We know,

↝ Length of major arc + Length of minor arc = Circumference of circle.

We know,

 \red{ \boxed{ \sf{ \:Circumference_{(circle)} = 2\pi \: r }}}

So,

\rm :\longmapsto\:2\pi \: r =  \: 2\pi \:  +  \: 22 \: \pi

\rm :\longmapsto\:2\pi \: r =  \: 24 \: \pi

\bf\implies \:r \:  =  \: 12 \: cm

Let we further assume that minor arc subtends an angle p at the centre.

We know,

 \red{ \boxed{ \sf{l \:  =  \: 2 \: \pi \: r \: \dfrac{p}{360 \degree \: } }}}

where

  • l is the length of minor arc

  • r is the radius of circle

  • p is the central angle subtended at the centre by minor arc

Now,

We have

  • l = 2 pi cm

  • r = 12 cm

↝ On Substituting all the values, we get

\rm :\longmapsto\:2 \: \pi \:  =  \: 2 \: \pi \:  \times  \: 12 \times \dfrac{p}{360\degree \: }

\rm :\longmapsto\:1 = \dfrac{p}{30\degree \: }

\bf :\implies\:p \:  =  \: 30\degree \:

Additional Information :-

\rm :\longmapsto\:Area_{(sector)} \:  =  \: \pi \:  {r}^{2} \: \dfrac{ \theta \: }{360\degree \: }

\rm :\longmapsto\:Area_{(major \: sector)} \:  =  \: \pi \:  {r}^{2} \: \dfrac{(360\degree \:  -  \theta \: )}{360\degree}

\rm :\longmapsto\:Area_{(minor \: segment)} = \dfrac{\pi \:  {r}^{2} \theta }{360\degree \: }  - \dfrac{1}{2} {r}^{2} \: sin \theta

\rm :\longmapsto\:Area_{(major \: segment)} = \pi {r}^{2}  - \dfrac{\pi \:  {r}^{2} \theta }{360\degree \: } + \dfrac{1}{2} {r}^{2} \: sin \theta

Similar questions