Math, asked by OoSENPAIoO, 4 days ago

The length of the parallel sides of a trapezium are in the ratio 4:7. If the height of trepezium is 14m and its Area is 385 Sq.M. Find the length of its parallel Sides . ​

Answers

Answered by nithiabhi1227
2

Answer:

REF.Image

Let the parallel sides of trapezium be 4x and 7x

Height =DE=14 m (given)

Area =385 m

2

(given)

Area of trapazium =

2

1

(AB+CD)×DE

⇒385=

2

1

(7x+4x)×14

⇒11×7x=385

⇒x=5 m

∴ the sides are 4x=4×5=20 m

7x=7×5=35 m

Answered by Vibes51
38

Answer:

your answer :

Ratio of length = 4:7

length of one parallel sides = 4x

length of second parallel sides = 7x

Height = 14 m

Area = 385 Sq.m

area \:  =  \:  \frac{1}{2} (a + b) \times h \: \\  \\ 385 \:  =  \:  \frac{1}{2} (4x + 7x) \:  \times 14 \\  \\

385 × 2 = ( 11x ) × 14

 \frac{385}{14}  \times 2 \:  = 11x \\  \\   \frac{385 \times 2}{14 \times 11}  = x \:  \\  \\ x = 5

length of one parallel side = 4x

= 4 × 5

= 20 m

Length of other parallel side = 7x

= 7 × 5

= 35 m

Step-by-step explanation:

i hope it helps :)

Attachments:
Similar questions