Math, asked by blackwell99, 3 months ago

The length of the rectangular field is 50 m if its perimeter 150 m , what is its breadth?​

Answers

Answered by Anonymous
39

\bf Given\begin{cases} & \sf{Length\:of\;rectangular\;field = \bf{50\;m}}  \\ & \sf{Perimeter\;of\;rectangular\;field = \bf{150\;m}}  \end{cases}\\ \\

To find: Breadth of rectangular field?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let breadth of rectangular field be "x" m.

m.⠀⠀⠀⠀

\setlength{\unitlength}{0.9cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 50 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large x m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

Therefore,

⠀⠀⠀⠀

{\underline{\sf{\bigstar\: According\:to\:the\:question\::}}}\\ \\

:\implies\sf 2(50 + x) = 150\\ \\

:\implies\sf (50 + x) = \cancel{\dfrac{150}{2}}\\ \\

:\implies\sf 50 + x = 75\\ \\

:\implies\sf x = 75 - 50\\ \\

:\implies{\underline{\boxed{\sf{\purple{x = 25}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Breadth\:of\;rectangular\;field\;is\; {\textsf{\textbf{25\;m}}}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
19

Given:

  • Length of rectangular field = 50 m
  • Perimeter of rectangular field = 150 m

To Find:

  • Breadth

Solution:

Let the breadth rectangular of rectangular field be "x".

As we know:

★ Perimeter of rectangle = 2(Length + breadth)

Putting the values:

→ 2(50 + x) = 150

→ (50 + x) = 150/2

→ 50 + x = 75

→ x = 75 - 50

→ x = 25 m

Hence,

  • Breadth of rectangular field = 25 m.
Similar questions