Math, asked by siddharth31055, 6 months ago

the length of the rectangular playground is 2m larger than its breath if the area of playground is 195m square find the length and breath of field

Answers

Answered by MoodyCloud
67
  • Length is 15 m.
  • Breadth is 13 m.

Step-by-step explanation:

Given:-

  • Area of rectangular playground is 195 m².

To find:-

  • Length and breadth of rectangular playground

Solution:-

Let, Breadth of rectangular playground be x.

And Length of rectangular playground be x + 2. [We take length be x + 2 because it is given that length is larger than it's breadth by 2m ]

 \boxed{\sf \bold{Area \: of \: rectangle = Length \times Breadth}}

Put, Length, Breadth and area of rectangular playground in formula :

 \longrightarrow (x + 2) × x = 195

 \longrightarrow x² + 2x = 195

 \longrightarrow x² + 2x - 195 = 0

 \longrightarrow x² + 15x - 13x - 195 = 0

 \longrightarrow x(x + 15) - 13(x + 15) = 0

 \longrightarrow (x + 15) (x - 13) = 0

____

• x + 15 = 0

x = -15

• x - 13 = 0

x = 13

Breadth cannot be negative. So, Breadth of rectangular playground is 13 m

And We have also taken, Length be x + 2 = 13 + 2 = 15. Thus, Length of rectangular playground is 15 m.

Answered by MяMαgıcıαη
221

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \frak { \underline\purple{\qquad Given\: :\qquad}}} \:

  • Length of playground is 2 m larger than it's width and it's area is 195m²

{ \frak { \underline\purple{\qquad To\:Find\: :\qquad}}} \:

  • Length and width of the playground.

{ \frak { \underline\purple{\qquad Diagram \::\qquad}}} \:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x + 2 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large x m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

{ \frak { \underline\purple{\qquad Solution\: :\qquad}}} \:

\:\:\:\:\:\:\bullet\:\sf{Let \:it's \:width(w)\: = x \:m}

\:\:\:\:\:\:\bullet\:\sf{\therefore\:Length(l)\: =\: x \:+ 2\: m}

{\red\bigstar\:\underline{\boxed {\bold \green {Area_{(rectangle)}\:\leadsto\:width(w)\:\times\:length(l)}}}}

Putting all values in the formula :-

\sf{x\:\times\:(x\:+\:2)\:=\:195}

\sf{x^2\:+\:2x\:=\:195}

\sf{x^2\:+\:2x\:=\:195}

\sf{x^2\:+\:2x\:-\:195\:=\:0}

Quadratic equation formed !!

Let's solve it !!

\sf{x^2\:+\:15x\:-\:13x\:-\:195\:=\:0}

\sf{x(x\:+\:15)\:-\:13(x\:+\:15)\:=\:0}

\sf{(x\:+\:15)\:(x\:-\:13)\:=\:0}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  • Value of x for , (x + 15) = 0

➱ x = 0 - 15

x = -15

  • Value of x for , (x - 13) = 0

➱ x = 0 + 13

x = 13

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Width cannot be negative !!

\underline{\boxed {\bold {\therefore \purple {x\:=\:width(w)\:=\:13}}}}\:\pink\bigstar

  • Length

\sf{ x \:+ \:2}

\sf{13\:+\:2}

\sf\underline{15}

\underline{\boxed {\bold {\therefore \orange {x\:+\:2\:=\:length(l)\:=\:15}}}}\:\green\bigstar

{ \frak { \underline\purple{\qquad Note :\qquad}}} \:

  • Dear user if you are not able to see the diagram from app. Please see it from the the site (brainly.in). It will be correctly displayed there.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Perfect!
PsychoUnicorn: Superb! ♡
Similar questions