Math, asked by tamang79, 8 months ago

the length of the shadow of a tower is 20m when the altitude of the sun is 60°. what's the height of the tower​

Answers

Answered by pandaXop
137

Height = 203 or 34.64 m

Step-by-step explanation:

Given:

  • Length of shadow of tower is 20 m.
  • Altitude of sun is 60°.

To Find:

  • What is the height of the tower ?

Solution: Let AB be a tower of h m and BC be its shadow.

In ∆ABC we have

  • AB {perpendicular} = h m

  • BC {base} = 20 m

  • ∠ACB {angle of elevation} = 60°

Applying tanθ

tanθ = Perpendicular/Base

➮ tan60° = AB/BC

➮ √3 = h/20

➮ 20√3 = h

If we take value of √3 to be 1.732 then approx height will be 20 × 1.732 = 34.64 m.

Let's make it by using cotθ

cotθ = Base/Perpendicular

➯ cot60° = BC/AB

➯ 1/√3 = 20/h

➯ h = 20√3

➯ h = 20 × 1.732 = 34.64 m

Hence, the height of tower is 20√3 m or 34.64 m.

Attachments:

ButterFliee: Perfect ( ◜‿◝ )♡
pandaXop: Thanks ☃️
kulsumsimran88: tq for following me sir
Answered by Anonymous
72

\huge\bold{\mathbb{QUESTION}}

The length of the shadow of a tower is \sf 20\:m when the altitude of the sun is \sf 60\degree. What's the height of the tower?

\huge\bold{\mathbb{GIVEN}}

  • The length of the shadow of a tower is \sf 20\:m.

  • The altitude of the sun is \sf 60\degree.

\huge\bold{\mathbb{TO\:FIND}}

The height of the tower.

\huge\bold{\mathbb{DIAGRAM}}

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.1,2.5){\large\bf h\:m}\put(2.8,.3){\large\bf 20\:m}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\bold{60^{\circ}}$}\end{picture}

\huge\bold{\mathbb{SOLUTION}}

Let,

  • the height of the tower be \sf h\:m.

  • \sf AB is the height of the tower.

  • \sf BC is the shadow of the tower.

In \sf \triangle ABC,

  • \sf AB = h\:m

  • \sf BC = 20\:m

  • \sf \angle BAC = 60\degree

Using \sf \bold {tan \theta \longrightarrow}

\sf tan \theta= {\Large{\frac{AB}{BC}}}

\implies\sf tan60\degree= {\Large{\frac{h}{20}}}

\implies\sf \sqrt{3}= {\Large{\frac{h}{20}}}

Multiply both sides with \sf 20.

\implies\sf \sqrt{3}\times20= {\Large{\frac{h}{20}}}\times20

\implies\sf 20 \sqrt{3}= {\Large{\frac{h}{\cancel{20}}}}\times{\cancel{20}}

\implies\sf 20 \sqrt{3}= h

\implies\sf h= 20 \sqrt{3}

\implies\sf h=(20\times1.732)\:\:\:\:\{\sqrt{3}=1.732\}

\implies \boxed{\sf h = 34.64}

Alternative method \longrightarrow

Using \sf \bold{cot \theta \longrightarrow}

\sf cot \theta= {\Large{\frac{BC}{AB}}}

\implies\sf cot60\degree= {\Large{\frac{20}{h}}}

\implies\sf {\Large{\frac{1}{\sqrt{3}}}}= {\Large{\frac{h}{20}}}

By cross multiplication.

\implies\sf (1\times h)= (20\times{\sqrt{3}})

\implies\sf h= 20 \sqrt{3}

\implies\sf h= (20\times1.732)\:\:\:\:\{\sqrt{3}=1.732\}

\implies \boxed{\sf h = 34.64}

\huge\bold{\mathbb{HENCE}}

\sf h = 34.64

Height of the tower \sf =h\:m = 34.64\:m

\huge\bold{\mathbb{THEREFORE}}

The height of the tower is \sf  34.64\:m.

\huge\bold{\mathbb{DONE}}

Similar questions
Math, 1 year ago