Physics, asked by mahisingh5784, 10 months ago

The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from 45 to 30. Then the height of the tower is

Answers

Answered by SarcasticL0ve
20

DIAGRAM:

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.4mm}\put(8,1){\line(1,0){4}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\qbezier(12,1)(11,1.4)(8,2.9)\put(7.7,2){\sf{\large{h}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\qbezier(11,1)(10.8,1.2)(11.1,1.4)\put(9.4,1.2){\sf\large{45^{\circ}$}}\put(10.5,1.2){\sf\large{30^{\circ}$}}\put(11.9,.7){\sf\large D}\put(7.9,3){\sf\large B}\put(10.4,.7){\sf \large C}\put(7.9,.7){\sf\large A}\put(8.2,0.8){\vector(1,0){0.7}}\put(9,.7){\sf\large x m}\put(10.2,0.8){\vector( - 1,0){0.7}}\put(10.6,0.8){\vector(1,0){0.2}}\put(10.9,.7){\sf\large 10 m}\put(11.8,0.8){\vector( - 1,0){0.2}}\end{picture}

Let AB be the tower and AC and AD be it's shadows when the angles of elevation of the sun are 40° and 30° respectively. Then, CD = 10 metres.

Let h be the height of tower and let AC be x metres.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\underline{\sf{\bigstar\;In\; \triangle\;CAB,\;}}}\\ \\

\qquad\sf tan\;45^\circ = \dfrac{AB}{AC}\\ \\

\qquad:\implies\sf 1 = \dfrac{h}{x}\\ \\

 \: \qquad:\implies\sf x = h\qquad\qquad\bigg\lgroup\bf eq\;(1) \bigg\rgroup\\ \\

{\underline{\sf{\bigstar\;Now,\;In\; \triangle\;CAB,\;}}}\\ \\

\quad\qquad\sf tan\;30^\circ = \dfrac{AB}{AD}\\ \\

\quad:\implies\sf \dfrac{1}{ \sqrt{3}} = \dfrac{h}{x + 10}\\ \\

 \: \quad:\implies\sf x + 10 = \sqrt{3} h\qquad\qquad\bigg\lgroup\bf eq\;(2) \bigg\rgroup\\ \\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Now, Substituting the value of x obtained from eq (1) and eq (2), \\ \\

\quad\qquad\qquad\sf h + 10 = \sqrt{3}\\ \\

\qquad:\implies\sf h( \sqrt{3} - 1) = 10\\ \\

\qquad\quad:\implies\sf h = \dfrac{10}{ \sqrt{3} - 1}\\ \\

:\implies\sf h = \dfrac{10}{ \sqrt{3} - 1} \times \dfrac{ \sqrt{3} + 1}{ \sqrt{3} + 1}\\ \\

\qquad:\implies\sf h = 10 \bigg\lgroup\sf \dfrac{ \sqrt{3} + 1}{2} \bigg\rgroup\\ \\

\qquad\quad:\implies\sf h = 5( \sqrt{3} + 1)\\ \\

\quad\qquad:\implies\sf h = 5(1.73 + 1)\\ \\

\qquad\qquad:\implies{\underline{\boxed{\frak{\purple{13.65\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;height\;of\;the\;tower\;is\; \bf{13.65\;metres}.}}}

Answered by ItzDeadDeal
5

LINE OF SIGHT: The line of sight is a line drawn from the eye of an observer to the point in the object viewed by the observer.

ANGLE OF ELEVATION: The angle of elevation of an object viewed is the angle formed by the line of sight with the horizontal , when it is above the horizontal level.

ANGLE OF DEPRESSION:The angle of depression of an object viewed is the angle formed by the line of sight with the horizontal , when it is below the horizontal level.

•Angle of elevation and depression are always acute angles.

•If the observer moves towards the perpendicular line(Tower/ building) then angle of elevation increases and if the observer move away from the perpendicular line(Tower/ building) angle of elevation decreases.

Attachments:
Similar questions