Math, asked by sameer2472, 1 year ago

the length of the sides of a triangle are 33 cm 44 cm and 55 CM respectively find the area of the triangle and hence find the height corresponding of the side measuring 44 cm

Answers

Answered by jeya0801
5

Answer:


Step-by-step explanasemiperimeter = (33 + 44 + 55)/2

= 66 cm

use hero's formula ,


area of triangle =root {66 (66- 33)(66-44)(66-55)}


=root {66 x 33 x 22 x 11 }

=11 x 11 x 6 = 121 x 6 = 726 cm^2


area of triangle = 1/2 height x base

726 = 1/2 height x 44


height = 726/22 =33 cm



Read more on Brainly.in - https://brainly.in/question/1101978#readmoretion:


Answered by shadowsabers03
2

Answer:

$$Area$\ = \bold{726}\ $cm^2 \\ \\ \\ $Height$\ = \bold{33}\ $cm

Step-by-step explanation:

s = \frac{33 + 44 + 55}{2} = \frac{132}{2} =\  66 \\ \\ \\ $Area$ \\ \\ = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = \sqrt{66(66 - 33)(66 - 44)(66 - 55)} \\ \\ = \sqrt{66 \times33 \times 22 \times 11} \\ \\ = \sqrt{11 \times 6 \times 11 \times 3 \times 11 \times 2 \times 11} \\ \\ = \sqrt{11 \times 11 \times 11 \times 11 \times 6 \times 3 \times 2} \\ \\ = \sqrt{11 \times 11 \times 11 \times 11 \times 3 \times 2 \times 3 \times 2} \\ \\


\\ \\ = \sqrt{11 \times 11 \times 11 \times 11 \times 3 \times 3 \times 2 \times 2} \\ \\ = 11 \times 11 \times 3 \times 2 \\ \\ = \bold{726} \\ \\ \\ \therefore\ $Area$\ = \bold{726}\ $cm^2$ \\ \\ \\


$$Let the height corresponding to the side measuring 44 cm be$\ h. \\ \\ \\ $Area$ \\ \\ = \frac{1}{2} \times 44 \times h = 726 \\ \\ = 22h = 726 \\ \\ h = \frac{726}{22} = \bold{33} \\ \\ \\ \therefore\ $The height is$\ \bold{33}\ $cm. \\ \\ \\


$$Hope this may be helpful. \\ \\ Please mark my answer as the$\ \bold{brainliest}\ $if this may be helpful. \\ \\ Thank you. Have a nice day.$ \\ \\ \\ \#adithyasajeevan

Similar questions