Math, asked by Shreyanshghosh690, 1 month ago

The length of the sides of a triangle are 5 cm, 12 cm and 13 cm. Find the length

of perpendicular from the opposite vertex to the side measuring 13 cm.​

Answers

Answered by ravikabbur2008
0

Answer:

30

Step-by-step explanation:

5 + 12 + 13 = 30

please make me brain list

Answered by lilasharma716
2

Answer: The required length of perpendicular from the opposite vertex to the side measuring 13 \, \text{cm} is \frac{60}{13} \,\text{cm}.

Step-by-step explanation: Let the given sides of triangle \triangle ABC (say) be denoted by AB=\, 13 \text{cm},\, AC=\,  5\text{cm} \,\, \text{and} \, BC=\, 12 \text{cm}.  From figure, a= 13 \text{cm}, b= 12 \text{cm} \,\text{and} \, c= 5\text{cm}. We need to find the length h of perpendcular CD from vertex C on AB.

Then semi- perimeter (say s) of \triangle ABC will be ,

$ s= \, \frac{a+b+c}{2}$

   =\frac{13+12+5}{2}

  = 15 \text{cm}.

Using Heron's formula for area of a triangle,

area( \triangle ABC) = \sqrt{s(s-a_(s-b)(s-c)

                      = \sqrt{15(15-13)(15-12)(15-3)

                      = \sqrt{ 15\times 2 \times 3 \times \times 10

                      =\, 30\, {cm}^2.

Now, using general formula for the area of a triangle, we have

area (\triangle ABC) = \frac{1}{2} \times h \times 13

                 30=\, \frac{13 h}{2}

               h =\, \frac{60}{13} \,\text{cm}.

Or h=\,4.62\, \text{cm}.

Attachments:
Similar questions