Math, asked by singhshipra2619, 8 months ago

The length of the tangent from point (5, 1) to
the circle x2 + y2 + 6x - 4y - 3 = 0 is​

Answers

Answered by amansharma264
5

EXPLANATION.

The length of the tangent from the point ( 5,1)

equation of circle = x² + y² + 6x - 4y - 3 = 0

 \sf : \implies \: formula \: of \: length \: tangent \\  \\ \sf : \implies \: t \:  =  \sqrt{ s_{1} }  \\  \\  \sf : \implies \: put \: the \: points \: in \: equation \: of \: circle

\sf : \implies \: t \:  =  \sqrt{ {5}^{2} +  {1}^{2}   + 6(5) - 4(1) - 3}  = 0 \\  \\ \sf : \implies \:  \sqrt{25 + 1 + 30 - 4 - 3}  = 0 \\  \\ \sf : \implies \:  \sqrt{56 - 7}  = 0 \\  \\ \sf : \implies \:   \sqrt{49}   = 7

\sf : \implies \:  \green{{ \underline{length \: of \: tangent \: from \: point \: (5,1) \: is \:  = 7}}}

Answered by Anonymous
8

✒️GIVEN:

  • Length of the tangent from the point (5,1)
  • The eq. of the Circle + + 6x - 4y - 3 = 0

✒️ANSWER:

7

✒️SOLUTION:

 \rm S_{1} :  {x}^{2}  +  {y}^{2}  + 6x - 4y - 3 = 0

Center, of the above circle, \rm S_1 , is C(-3,2) and radius

 \rm r =  \sqrt{9 + 4 + 3}  =  \sqrt{16}  = 4

Let, given point be P(5,1)

Now,

 \rm CP =  \sqrt{64 + 1}  =  \sqrt{65}

Hence, length of the required tangent is,

 \rm  = \sqrt{{CP}^{2}  -  {r}^{2} }  \\  \rm \implies  \sqrt{65+ 16}  \\ \rm  \implies   \sqrt{49}  = 7

Hence, the length of the tangent = 7

Attachments:
Similar questions