Math, asked by pratapabir7665, 1 year ago

The length of the transverse axis of a hyperbola is 7 and it passes through the point (5. - 2). The equation of the hyperbola -

Answers

Answered by knjroopa
5

Answer:

4/49 x^2 - 51/196 y^2 = 1

Step-by-step explanation:

Given The length of the transverse axis of a hyperbola is 7 and it passes through the point (5. - 2). The equation of the hyperbola

Let the equation of the hyperbola be x^2/a^2 - y^2/b^2 = 1

We know that length of transverse axis is 2a = 7 and so a = 7/2

The point (5, - 2) lies on hyperbola

So we have x = 5 and a = 7/2 and y = - 2. We need to find b

So 25/(7/2)^2 - 4/b^2 = 1

100/49 - 4/b^2 = 1

b^2 = 49 x 4 /51

b^2 = 196/51

Now we have the equation of parabola that is

4/49 x^2 - 51/196 y^2 = 1

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=16x^{2}-51y^{2}=196}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Transverse\: axis = 7} \\ \\ \tt{:\implies Point\:of\:hyperbola=(5,-2)}  \\ \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Eqn \: of \:hyperbola=?}

• According to given question :

 \bold{As \: we \: know \: that} \\\tt{:\implies Transverse\: axis = 2a} \\  \\ \tt{:  \implies 7= 2a} \\  \\   \green{\tt{: \implies a =  \frac{7}{2} }} \\  \\  \bold{Eqn \: of \: standard \: hyperbola} \\  \tt{:  \implies  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1 } \\  \\  \text{Putting \: value \: of \: b} \\  \tt{: \implies   \frac{ {x}^{2} }{ (\frac{7}{2})^{2} }  -  \frac{ {y}^{2} }{ b^{2} }  = 1} \\  \\  \tt{: \implies   \frac{ 4{x}^{2} }{ 49}  -  \frac{ {y}^{2} }{b^{2}}  = 1} \\  \\  \text{(5, - 2) \: satisfy \: on \: this \: eqn} \\  \tt{: \implies  \frac{ 4\times{5}^{2} }{49 }  -  \frac{ {( - 2)}^{2} }{b^{2}}  = 1} \\  \\  \tt{:  \implies  \frac{100}{49 }  -  \frac{4}{b^{2}}  = 1} \\  \\  \tt{:  \implies  \frac{4}{ {b}^{2} }  =  \frac{100}{49 } -1}\\  \\  \tt{: \implies  \frac{4}{ {b}^{2} }  =  \frac{51}{49} } \\  \\  \tt{:  \implies 51 {b}^{2}  = 196} \\  \\  \tt{: \implies  {b}^{2}  =  \frac{196}{51} }

 \text{Putting \: value \: of \: a \: and \: b \: in \: standard \: eqn} \\  \tt{:  \implies  \frac{ 4{x}^{2} }{49} -   \frac{51 {y}^{2} }{196}  = 1} \\  \\  \green{ \tt{  : \implies 16 {x}^{2}  - 51 {y}^{2}  = 196}} \\  \\ \green{\tt{\therefore Eqn \: of \: hyperbola \: is \:  \: 16 {x}^{2}  - 51  {y}^{2}  = 196}}

Similar questions