Math, asked by bibhupada1973, 1 month ago

The length of the two parallel sides of a trapezium
are 29 cm and 11 cm and the length of each of the
non-parallel sides is 41 cm, find the area of the
trapezium.​

Answers

Answered by mathdude500
12

\large\underline{\sf{Given- }}

  • The length of the two parallel sides of a trapezium are 29 cm and 11 cm.

  • The length of each of the non-parallel sides is 41 cm.

\large\underline{\sf{To\:Find - }}

  • The area of the trapezium.

\large\underline{\sf{Solution-}}

Let us assume that ABCD be a trapezium such that

  • AB || CD

  • AB = 11 cm

  • BC = 41 cm

  • CD = 29 cm

  • DA = 41 cm

Construction :-

  • Draw AL and BM perpendicular to CD intersecting CD at L and M respectively.

Now,

\bf :\longmapsto\:In \:  \triangle  \: ALD \:  and \:  \triangle  \: BMC

\rm :\longmapsto\:AD \:  =  \: BC \:   \:  \:  \: \:  \{given \}

\rm :\longmapsto\:AL \:  =  \: BM \:  \:  \{distance \: between \:  \parallel \: lines \}

\rm :\longmapsto\: \angle \: ALD =  \angle \: BMC \:  \:  \{each \: 90 \degree \}

\bf :\longmapsto\: \triangle ALD \:  \cong \:  \triangle BMC \:  \{ \: RHS \:  Congruency\}

\rm :\implies\:LD \:  =  \: MC \:  =  \: x

Now,

  • It is given that

\rm :\longmapsto\:CD  \: =  \: 29

\rm :\longmapsto\:DL + LM + MC = 29

\rm :\longmapsto\:x + 11 + x = 29

\rm :\longmapsto\:2x = 29 - 11

\rm :\longmapsto\:2x = 18

\rm :\implies\:x = 9 \: cm

Now,

 \rm :\longmapsto\:In  \: \triangle  \: ALD

\rm :\longmapsto\:Using \:  Pythagoras \:  Theorem

\rm :\longmapsto\: {AL}^{2}  +  {LD}^{2}  =  {AD}^{2}

\rm :\longmapsto\: {AL}^{2}  +  {(9)}^{2}  =  {(41)}^{2}

\rm :\longmapsto\: {AL}^{2}  + 81 = 1681

\rm :\longmapsto\: {AL}^{2}  = 1600

\rm :\longmapsto\:AL =  \sqrt{1600}

\bf\implies \:AL = 40 \: cm

Therefore,

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2} (sum \: of \parallel \: sides) \times distance

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2}  \times (AB + CD) \times AL

\rm :\longmapsto\:Area_{(trapezium)} = \dfrac{1}{2}  \times (11 + 29) \times 40

\rm :\longmapsto\:Area_{(trapezium)} = 20 \times 40

\bf :\longmapsto\:Area_{(trapezium)} = 800 \:  {cm}^{2}

Attachments:
Similar questions