Math, asked by batsbeforehats, 6 months ago

The length of three sides of a right angled triangle are ( x -2) cm , x cm and ( x + 2) cm. The value of x is:

Answers

Answered by Anonymous
5

Given :

  • First side = (x + 2) cm

  • Second side = x cm

  • Third side = (x - 2) cm

To find :

The value of x.

Solution :

Since , it's right-angled Triangle , we get the sides of the triangle as :

  • Hypotenuse = (x + 2) cm.

  • Base = x cm.

  • Height = (x - 2) cm.

Now if we will use the Pythagoras theorem , we will be able to find the required value.

Pythagoras theorem :

\boxed{\bf{H^{2} = B^{2} + P^{2}}}

Where :

  • H = Hypotenuse
  • B = Base
  • P = Hypotenuse

Now using the Pythagoras theorem and substituting the values in it, we get :

:\implies \bf{H^{2} = B^{2} + P^{2}} \\ \\ \\

:\implies \bf{(x + 2)^{2} = x^{2} + (x - 2)^{2}} \\ \\ \\

Using the identity :

  • (a + b)² = a² + 2ab + b²

  • (a + b)² = a² - 2ab + b²

:\implies \bf{x^{2} + 2 \times 2 \times x + x^{2} = x^{2} + x^{2} + 2 \times 2 \times x + x^{2}} \\ \\ \\

:\implies \bf{x^{2} + 4x + 2^{2} = x^{2} + x^{2} - 4x + 2^{2}} \\ \\ \\

:\implies \bf{x^{2} + 4x + 2^{2} = 2x^{2} - 4x - 2^{2}} \\ \\ \\

:\implies \bf{0 = - (x^{2} + 4x + 2^{2}) + (2x^{2} - 4x - 2^{2})} \\ \\ \\

:\implies \bf{0 = - x^{2} - 4x - 2^{2} + 2x^{2} - 4x - 2^{2}} \\ \\ \\

:\implies \bf{0 = - x^{2} - 4x - 4 + 2x^{2} - 4x + 4} \\ \\ \\

:\implies \bf{0 = - x^{2} - 4x - 4 + 2x^{2} - 4x + 4} \\ \\ \\

:\implies \bf{0 = x^{2} - 8x} \\ \\ \\

:\implies \bf{0 = x^{2} - 8x)} \\ \\ \\

:\implies \bf{0 = x(x - 8)} \\ \\ \\

:\implies \bf{\dfrac{0}{x} = x - 8} \\ \\ \\

:\implies \bf{0 = x - 8} \\ \\ \\

:\implies \bf{8 = x} \\ \\ \\

\boxed{\therefore \bf{x = 8\:cm}} \\ \\ \\

Hence, the value of x is 8.

Answered by hanumant8867
0

Answer:

Step-by-step explanation:

Similar questions