Math, asked by anshulsharma9363, 1 year ago

the length of two adjacent sides of parellelogram are 17 cm and 12 cm. One of its diagonals is 25 cm . Find the area of parallelogram. Also find the length of altitude from the vertex on the side of length 12 cm

Answers

Answered by suraniparvin
75
See the attached file
Attachments:
Answered by mysticd
56

Answer:

 Area \: of \: the \: parallelogram \: ABCD = 180 \: cm^{2}\\Required \: Altitude = 15 \:cm

Step-by-step explanation:

Given ,

ABCD is a parallelogram,

AB = c = 12 cm,

BC = a = 17 cm,

AC = b = 25 cm

Now,

i) In ABC,

a = 17 , b = 25 and c = 12

s =\frac{a+b+c}{2}\\=\frac{17+25+12}{2}\\=\frac{54}{2}\\=27

s-a=27-17=10,\\s-b=27-25=2,\\s-c=27-12=15

By Heron's Formula:

 Area\: of \: \triangle ABC \\= \sqrt{s(s-a)(s-b)(s-c)}\\=\sqrt{27\times 10\times 2\times 15}\\=\sqrt{3\times 3\times 3 \times 2\times 5 \times 2 \times 3 \times 5 }\\=\sqrt{(3\times 3 )\times (3\times 3)\times (2\times 2)\times(5\times 5)}\\=3\times 3\times 2\times 5\\=90\: cm^{2}

 Now , \\Area \: of \: the \: parallelogram \: ABCD = 2\times Area \: of \: \triangle ABC \\=2\times 90\: cm^{2}\\=180\: cm^{2}

 In \: parallelogram \: ABCD , base = CD = 12 \: cm \\Altitude =BE =h

 Area \: of \: ABCD = 180\:cm^{2}

\implies base  \times altitude = 180

\implies 12 \times h = 180

\implies h = \frac{180}{12}

\implies h = 15 \: cm

Therefore,

 Area \: of \: the \: parallelogram \: ABCD = 180 \: cm^{2}\\Required \: Altitude = 15 \:cm

•••♪

Attachments:
Similar questions