Math, asked by rai8872641182, 3 months ago


The length of two parallel sides of trapezium is 3.4 cm and 4.2 CM.
the distance between the parallel side is 12 cm .find the area.​

Answers

Answered by FIREBIRD
110

Answer:

The area of the trapezium is :-

44.4 \: {cm}^{2}

Step-by-step explanation:

We Have :-

Length of Parallel sides of trapezium = 3.4 cm and 4.2 cm

Height = 12 cm

To Find :-

Area of the Trapezium

Formula Used :-

Area of Trapezium =

 \dfrac{1}{2}  \times  \: ( \: sum \: of \: parallel \: sides \: ) \times height

Solution :-

area \:  =  \:  \dfrac{1}{2}  \times ( \: 3.2 + 4.2 \: )  \times 12 \\  \\ area \:  =  \dfrac{1}{2}  \times 7.4 \times 12 \\  \\ area \:  = 7.4 \times 6 \\  \\ area \:  = 44.4 \: cm^{2}

Answered by Anonymous
234

Answer:

 \huge \dag \Large\underline\frak \red{Given}

  • The length of two parallel sides of trapezium is 3.4 cm and 4.2 CM.
  • The distance between the parallel side is 12 cm

  \huge \dag \Large \underline\frak \red{To \: Find }

  • Area of Trapezium

 \huge\dag \Large\underline\frak \red{Using \: Formula}

{:  \implies\sf \pink{Area \: of \: Trapezium } =  \purple {\dfrac{1}{2}  \times Sum \:of\: Parallel \:Side  \times Height}}

 \huge \dag \Large \underline \frak \red{Solution}

Here we know that the two parallel side of Trapezium and the Height of Trapezium also.

So,

{:\implies \sf \pink{Area }=  \purple {\dfrac{1}{2}  \times (3.4 + 4.2)cm \times 12 \: cm}}

{:  \implies \sf \pink{Area} = \purple { \dfrac{1}{2}  \times 7.6 \:  cm\times 12 \: cm}}

:   \implies  \sf \pink{Area} = \cancel \purple {\dfrac{91.2 }{2} } {\purple{cm}^{2}}

: \implies \sf \pink{Area }= \purple{45.6 \:  {cm}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \Large\underline{\boxed{\frak\purple{Area} =  \sf\pink{ 45.6 \: {cm}^{2} }}}

 \huge \dag \Large \underline\frak \red{Therefore}

  • The of Trapezium is 45.6 cm²
Similar questions