Math, asked by syedquadri926, 10 months ago

the length of two sides of a triangle are 4,5?write all the possible lengths of third side​

Answers

Answered by FIDHI
0

How to find the third side?

Sum = 4+5 =9

Difference 5-4=1

The third side should be a number between 9 and 1

So it can be any number between 1 and 9

IF YOU FIND IT USEFUL, PLS MARK AS BRAINLIEST

Hope this is useful

Answered by Anonymous
0

\Large{\underline{\underline{\bf{Solution :}}}}

We have given two sides of triangle as 4, 5. We have to find all the possible lengths of tge third side.

We know that,

\Large{\implies{\boxed{\boxed{\sf{(H)^2 = (B)^2 + (P)^2}}}}}

Where,

B is Base

P is Perpendicular

H is Hypotenuse

\rule{150}{2}

Let Hypotenuse be 5 and perpendicular be 4.

We get,

\sf{→(5)^2 = (4)^2 + (Base)^2} \\ \\ \sf{→(Base)^2 = 25 - 16} \\ \\ \sf{→(Base)^2 = 9} \\ \\ \sf{→B = \pm 3}

\rule{150}{2}

Now, Let 4 be Hypotenuse and 5 be perpendicular.

\sf{→ (4)^2 = (5)^2 + (Base)^2} \\ \\ \sf{→(Base)^2 = 16 - 25} \\ \\ \sf{→(Base)^2 = -9} \\ \\ \sf{→Base = \sqrt{-9}}

\rule{150}{2}

Now, 5 be Base and 4 be perpendicular.

\sf{(Hypotenuse)^2 = (5)^2 + (4)^2} \\ \\ \sf{→(Hypotenuse)^2 = 25 + 16} \\ \\ \sf{→ (Hypotenuse)^2 = 41} \\ \\ \sf{→Hypotenuse = \sqrt{42}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{0.19 cm}}\begin{picture}(12,4)\thicklines\put(12,40){$\#\:STAY\:HOME$}\put(11,35){$\#\:STAY\: SAFETY$}\put(20,20){\circle{10}}\put(19.5,21){\line(-1,0){1.5}}\put(20.5,21){\line(1,0){1.5}}\put(18.8,20.3){\circle*{0.7}}\put(21.1,20.3){\circle*{0.7}}\put(20,20.4){\line(0,-1){1.4}}\put(20.7,18.4){\line(-1,0){1.57}}\put(18.6,16.56){\line(0,-1){2}}\put(21.4,16.56){\line(0,-1){2}}\put(19,14.55){\line(-1,0){5}}\put(21,14.55){\line(1,0){5}}\put(14,14.55){\line(0,-1){16}}\put(26,14.55){\line(0,-1){16}}\put(14,14.55){\line(-4,3){5}}\put(26,14.55){\line(4,3){5}}\put(14,11){\line(-4,3){7.5}}\put(26,11){\line(4,3){7.5}}\put(9,18.3){\line(0,1){8.3}}\put(31,18.3){\line(0,1){8.3}}\put(33.5,16.6){\line(0,1){10}}\put(6.5,16.6){\line(0,1){10}}\put(3.5,26.5){\line(1,0){33}}\put(3.5,26.5){\line(0,1){20}}\put(3.5,46.5){\line(1,0){33}}\put(36.5,26.5){\line(0,1){20}}\put(14,-0.6){\line(1,0){12}}\put(14,-1.5){\line(1,0){12}}\put(14.4,-1.6){\line(0,-1){18.5}}\put(25.6,-1.6){\line(0,-1){18.5}}\put(20,-1.6){\line(0,-1){3}}\put(20,-4.6){\line(-1,-6){2.6}}\put(20,-4.6){\line(1,-6){2.6}}\put(14.4,-20){\line(-5,-6){3}}\put(25.6,-20){\line(5,-6){3}}\put(17.3,-20){\line(0,-1){3.7}}\put(17.3,-20){\line(-1,0){3}}\put(17.3,-23.6){\line(-1,0){6}}\put(22.6,-20){\line(0,-1){3.7}}\put(22.6,-20){\line(1,0){3}}\put(22.6,-23.6){\line(1,0){6}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions