Math, asked by vivekydv5698, 9 months ago

The lengths of sides of a triangle are 30 m, 26 m and 28 m. What is the length of the altitude drawn on the longest
side from opposite vertex?

Answer:

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\textsf{The lengths of sides of the triangle are 30m, 26m, 28m}

\underline{\textsf{To find:}}

\textsf{Length of the altitude drawn on the longest side}

\underline{\textsf{Solution:}}

\mathsf{First we find out, the area of the given triangle}

\textsf{We apply Heron's formula to find the area}

\mathsf{s=\dfrac{a+b+c}{2}=\dfrac{30+26+28}{2}=\dfrac{84}{2}=42}

\mathsf{Area\;of\;the\;trianlge=\sqrt{s(s-a)(s-b)(s-c)}}

\mathsf{Area\;of\;the\;trianlge=\sqrt{42(42-30)(42-26)(42-28)}}

\mathsf{Area\;of\;the\;trianlge=\sqrt{42{\times}12{\times}16{\times}14}}

\mathsf{Area\;of\;the\;trianlge=\sqrt{6{\times}7{\times}6{\times}2{\times}4^2{\times}2{\times}7}}

\mathsf{Area\;of\;the\;trianlge=\sqrt{2^2{\times}4^2{\times}6^2{\times}7^2}}

\mathsf{Area\;of\;the\;trianlge=2{\times}4{\times}6{\times}7}}

\mathsf{Area\;of\;the\;trianlge=336\;square\;units}

\textsf{Let h be the length of the altitude drawn on the 30 cm side}

\implies\mathsf{\dfrac{1}{2}{\times}30{\times}h=336}

\implies\mathsf{15{\times}h=336}

\implies\mathsf{h=\dfrac{336}{15}}

\implies\mathsf{h=22.4\;cm}

\underline{\textsf{Answer:}}

\textsf{The length of the required altitude is 22.4 cm}

Find more:

Sides of the triangle are 13cm, 14cm and 15 cm, find the length of thesmallest altitude of the triangle.

https://brainly.in/question/17401153

Answered by Anonymous
0

Answer:

your answer is 22 mate hope this helps

Similar questions