Math, asked by shreyayadav2617, 2 months ago

The lengths of sides of a triangle are in the ratio 3: 4:5 and its perimeter is 120 cm.
find its area​

Answers

Answered by Kumawatharish500
2

Step-by-step explanation:

Let the side of the trianle be x

therefore, all the sides are

3x, 4x, 5x

therefore, according to the give condition

3x + 4x + 5x = 120 (as perimeter of the triangle is sum of all the sides

12x = 120

x = 10

sides

30 . 40 ,50

Hope you like my effort

please like as the brainlist

Answered by ItzWhiteStorm
54

Let the sides be 3x,4x and 5x and perimeter is 120 cm respectively.

Let us use the heron's formula here,

  • Perimeter ; 2s = a + b + c

Applying the values,

\\

 \: \:  \:  \:  \:  \:  \:  \: : \implies  \sf{120 = 3x + 4x + 5x }\\  \\  \:  \:  \:  \:  \:  :  \implies \sf{120= 12x }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \implies \sf{ x = 120 ÷ 12} \\  \\ \:  \:  \:  \:  \:  \:  : \implies \sf{ x = 10 \:  cm }

\\

  • Therefore,The value of x is 10 cm,

\\

Putting the value of x in the given sides,

\\

\to \mathfrak{3x = 3 \times 10 = 30 \: cm} \\ \\  \to\mathfrak{4x = 4 \times 10 = 40 \: cm} \\  \\   \to\mathfrak{5x = 5 \times 10 = 50 \: cm}

\\

  • So,The sides is 30 cm,40 cm and 50 cm.

\\

 \:  \:  \:  \:  \implies \sf{2s = a + b + c} \\  \\ \:  \:  \:  \:  \implies \sf{2s = 30 + 40 + 50} \\  \\ \:  \:  \:  \:  \implies \sf{2s = 120} \\  \\  \:  \:  \:  \:  \implies \sf{s =   \cancel{\frac{120}{2}}} \\  \\ \:  \:  \:  \:  \implies \sf{s = 60 \:cm}

\\

  • Here,The value of s is 60 cm.

\\

 \sf{Area \:  of  \: triangle = \sqrt{s(s - a)(s - b)(s - c)}} \\  \\  \rm{putting \: the \: values} \\   \\ \sf{A =  \sqrt{60(60 - 30)(60 - 40)(60 - 50)}}  \\  \\  \sf{A =   \sqrt{60(30)(20)(10)}} \\  \\  \sf{A = \sqrt{2 \times 30 \times 30 \times 2 \times 10 \times 10}} \\  \\  \sf{A = \sqrt{{2}^{2} \times  {30}^{2} \times {10}^{2}}}  \\  \\  \sf{A = 2 \times 30 \times 10} \\  \\  \sf{A = 600 \:  {cm}^{2}}

  • Therefore,The area of triangle is 600 cm².

_____________________________

Similar questions