Math, asked by reebaenterprises66, 2 days ago

the lengths of the side forming a right angel of a right angled triangle are 8 cm and 25 cm find the area of the triangle

Answers

Answered by awiggins0300
0

Answer:

200 cm square .

Step-by-step explanation:

hope this helps.

Answered by StarFighter
5

Answer:

Given :-

  • The length of the side forming a right angle triangle are 8 cm and 25 cm.

\\

To Find :-

  • What is the area of the triangle.

\\

Formula Used :-

\clubsuit Area Of Triangle Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \dfrac{1}{2} \times B \times H}}}\: \: \: \bigstar\\

where,

  • B = Base
  • H = Height

\\

Solution :-

Given :

  • Base (B) = 8 cm
  • Height (H) = 25 cm

According to the question by using the formula we get,

\implies \sf\bold{\blue{Area_{(Triangle)} =\: \dfrac{1}{2} \times B \times H}}\\

\small \implies \bf Area_{(Triangle)} =\: \dfrac{1}{2} \times Base \times Height\\

\implies \sf Area_{(Triangle)} =\: \dfrac{1}{2} \times 8 \times 25\\

\implies \sf Area_{(Triangle)} =\: \dfrac{1 \times 8}{2} \times 25\\

\implies \sf Area_{(Triangle)} =\: \dfrac{1 \times 8 \times 25}{2}\\

\implies \sf Area_{(Triangle)} =\: \dfrac{8 \times 25}{2}\\

\implies \sf Area_{(Triangle)} =\: \dfrac{\cancel{200}}{\cancel{2}}\\

\implies \sf Area_{(Triangle)} =\: \dfrac{100}{1}\\

\implies \sf\bold{\red{Area_{(Triangle)} =\: 100\: cm^2}}\\

\sf\bold{\purple{\underline{\therefore\: The\: area\: of\: the\: triangle\: is\: 100\: cm^2\: .}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions