Math, asked by nkd540465, 9 months ago

the lengths of the side of the triangle are 7cm ,13cm and 12cm find the lengths of perpendicular from the
opposite vertex to the side whose lengths is 12cm ​

Answers

Answered by tanejakca
1
Area=square root of (S)(s-a)(s-b)(s-c)
Here s=(7+13+12)/2=32/2=16
So area = sq root 16*9*3*4 =24/3
1/2*12h=24/3
So h=6*3^1/2
Answered by Anonymous
7

Given:

Length of sides of triangle are:

7cm

13cm

12cm

━━━━━━━━━━━━━━━

Need to find:

The length of perpendicular from the opposite vertex to the side 12cm

━━━━━━━━━━━━━━━

Solution:

{ s = \dfrac{Perimeter}{2}}

\implies{ s = \dfrac{ a + b + c}{2}}

\implies{ s = \dfrac{ 7 + 13 + 12}{2}}

\implies{ s = \dfrac{ 32}{2} = 16cm}

=

━━━━━━━━━━━━━━━

We know

\bold{\red{Area\:of\:triangle = \sqrt{ (s) ( s - a ) ( s - b ) ( s - c)}}} \\

\implies{\sqrt{ (16) ( 16 - 7) ( 16 - 13) ( 16 - 12 )}}</p><p>

=\sqrt{ (16) (9) (3) (4)}= </p><p></p><p>	</p><p>

</p><p>=\sqrt{1728}

= 41.569cm^2</p><p>

━━━━━━━━━━━━━━━

{ Area\:of\:triangle = \dfrac{1}{2}\times{Base}\times{height}}

\implies{ 41.569 = \dfrac{1}{2}\times{12}\times{height}}

\implies{ 41.569 = 6h}

\implies{\red{\large{\bold{\boxed{h = 6.9282cm}}}}}⟹

h=6.9282cm

Similar questions