Math, asked by vishalydv2906, 11 months ago

The lengths of the sides of a right triangle are the integers a, b and c, and these integers have no common factor. If a < b < c and (c – a) : b = 4 : 5, then find the value of (b + c – a).

Answers

Answered by Agastya0606
0

Given: The lengths of the sides of a right triangle are the integers a, b and c, and these integers have no common factor. If a < b < c and (c – a) : b = 4 : 5.

To find: The value of (b + c – a) ?

Solution:

  • Now we have given that a < b < c and (c – a) : b = 4 : 5 ...........(i)
  • Consider ABC as right angled triangle.
  • Consider c is hypotenuse of triangle and angle ABC = 90°.
  • Using Pythagoras theorem, we have:

                 c² = a² + b²

                 c² - a² = b²

                 (c - a)(c + a) = b²

                 (c - a)/b = b/(c + a)                ......(ii)

  • Putting (i) in (ii), we get:

                 (c - a)/b = b/(c + a) = 4/5

  • Lets take first and third term, we have:

                 (c - a)/b = 4/5

                 5c - 5a = 4b

                 5c = 4b + 5a                         .....(iii)

  • Lets take second and third term, we have:

                 b/(c + a) = 4/5

                 5b = 4c + 4a                           .....(iv)

  • from equations iii and iv, we have:

                 4(4b + 5a) = 5(5b - 4a)

                 16b + 20a = 25b - 20a

                 40a = 9b

                 a/b = 9/40                              ......(v)

  • Now consider: 5c = 4b + 5a

                 5c = 4b + 5(9b/40)

                 5c = 4b + 9b/8

                 5c = (32b + 9b)/8

                 40c = 41b

                 b/c = 40/41                             .....(vi)

  • so , from equations v and vi, we get:

                 a : b : c = 9 : 40 : 41

                 (b + c - a) = (40 + 41 - 9)

                 (b + c - a) = 72

Answer:

              So the value of (b + c - a) is 72.

Similar questions