Math, asked by aayushin58, 8 months ago

The lengths of the sides of a triangle are 5 cm, 12 cm and 13 cm. What is the area of this triangle?​

Answers

Answered by ammuzzz51
0

Answer:

30cm^2

Step-by-step explanation:

√s(s-a)(s-b)(s-c)

s=a+b+c÷2

13+5+12÷2

30÷2

15cm

√15(15-13)(15-5)(15-12)

√15*2*10*3

3×5×2×2×3

3×5×2×3

15×3

30cm^2

Answered by SarcasticL0ve
3

☯ Let the sides of triangle be a, b and c.

⠀⠀

\frak{Given}\begin{cases} & \sf{a = \bf{5\;cm}}  \\ & \sf{b = \bf{12\;cm}} \\ & \sf{c = \bf{13\;cm}}\end{cases}\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

:\implies\sf s = semi - perimeter\\ \\

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\

:\implies\sf s = \dfrac{5 + 12 + 13}{2}\\ \\

:\implies\sf s = \dfrac{30}{2}\\ \\

:\implies\bf s = 15\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Now, Finding area of triangle using Heron's Formula,

⠀⠀

\star\;{\boxed{\sf{\purple{A = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf A = \sqrt{(15 - 5)(15 - 12)(15 - 13)}\\ \\

:\implies\sf A = \sqrt{15 \times 10 \times 3 \times 2}\\ \\

:\implies\sf A = \sqrt{900}\\ \\

:\implies{\boxed{\frak{\pink{A = 30\;cm^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Area\;of\;triangle\;is\; \bf{30\;cm^2}.}}}

Similar questions