Math, asked by Adityanegi27231, 9 months ago

The lengths of two sides of a right triangle containing the right angle differ by 2cm . If the area of the triangle is 24 cm square , verify this area by using heron's formula .

Answers

Answered by frozenPearl93
6

\huge\mathcal\pink{Solution:-}

✧Let one side be = x i.e base

then other side will be y i.e height

Their difference is 2

❥x - y = 2

❥y = x - 2.....

❥Area = ½ × b × h = 24

❥½ × x × ( x - 2 ) = 24

❥x² - 2x - 48 = 0

❥x² - 8x + 6x - 48 = 0

❥x × ( x - 8 ) + 6 × ( x - 8 ) = 0

❥( x + 6 ) × ( x - 8 ) = 0

❥x = - 6 or 8 cm

✧side cannot be in negative.... so x = 8 cm

y = x - 2 = 6 cm

Hypotenuse = √ ( 8² + 6² )

❥= √ ( 100 )

❥= 10 cm

So perimeter is.....

✧Perimeter = x + y + hypotenuse

❥= 8 + 6 + 10

❥= 24 cm......

Answered by InfiniteSoul
4

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

The length of the two sides of a right triangle containing the right angle differ by 2 cm. if the area of the triangle is 24cm sq, find the perimeter of the triangle.

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

let the 2 sides be x , x -2

{\bold{\blue{\boxed{\bf{ Given }}}}}

  • triangle is a right angle triangle
  • area = 24cm^2
  • sides = x , x - 2

{\bold{\blue{\boxed{\bf{Find }}}}}

  • 3rd side
  • perimeter

{\bold{\blue{\boxed{\bf{solution}}}}}

{\bold{\green{\boxed{\bf{area \: of \: triangle = \dfrac{1}{2} \times base \times  height}}}}}

\sf\implies 24 = \dfrac{1}{2} \times x \times x-2

\sf\implies 48 = x^2 - 2x

\sf\implies  x^2 + 2x  - 48 = 0

mid term split

\sf\implies  x^2 + 8x - 6x - 48 = 0

\sf\implies x (x+8) - 6 (x+8) = 0

\sf\implies (x-6)(x+8) = 0

x - 6 = 0 | x + 8 = 0

x = 0 + 6| x = 0 - 8

x. = 6 | x = -8

  • side cannot be negative

therefore x = 6cm , x+2 = 6 + 2 = 8cm

2 sides of triangle = 6cm , 8cm

  • though triangle is a right angle triangle
  • applying Pythagoras theoram

{\bold{\blue{\boxed{\bf{{hypo.}^2 = {height}^2 - {base}^2 }}}}}

\sf\longrightarrow hypo^2 = 6^2 + 8^2

\sf\longrightarrow hypo^2 = 36 + 64

\sf\longrightarrow hypo^2 = 100

\sf\longrightarrow hypo = \sqrt{100}

\sf\longrightarrow hypo = 10cm

{\bold{\blue{\boxed{\bf{perimeter = AB + BC + CA }}}}}

\sf\implies perimeter = 6 + 8 + 10

\sf\implies perimeter = 24cm

{\bold{\blue{\boxed{\bf{perimeter = 24cm}}}}}

Similar questions