Math, asked by ravirlyadav1845, 1 year ago

The lenth of latus rectum of hyperbola (X)2÷50-(y)2÷25=1 is?

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=\sqrt{50}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: hyperbola = \frac{{x}^{2}}{50}- \frac{{y}^{2}}{25}   = 1} \\  \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

\tt{: \implies  \frac{ {x}^{2} }{50}  +  \frac{ {y}^{2} }{25}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   - \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  50} \\   \\   \tt{\circ \:  {b}^{2}  = 25} \\  \\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 25}{\sqrt{50}} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  \sqrt{50} }}

Similar questions