The line 2x - y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The midpoint of PQ is
Answers
EXPLANATION.
The line 2x - y + 4 = 0 cuts the parabola y² = 8x.
As we know that,
We can write equation as,
⇒ 2x - y + 4 = 0.
⇒ y = 2x + 4.
Put the value of y = 2x + 4 in equation y² = 8x, we get.
⇒ y² = 8x.
⇒ (2x + 4)² = 8x.
As we know that,
Formula of :
⇒ (a + b)² = a² + b² + 2ab.
Using this formula in the equation, we get.
⇒ (2x)² + (4)² + 2(2x)(4) = 8x.
⇒ 4x² +16 + 16x = 8x.
⇒ 4x² + 16x - 8x + 16 = 0.
⇒ 4x² + 8x + 16 = 0.
⇒ 4(x² + 2x + 4) = 0.
⇒ x² + 2x + 4 = 0.
As we know that,
Let α₁ and α₂ be the roots of the equation.
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = - b/a.
⇒ α₁ + α₂ = -2.
⇒ y² = 8x.
⇒ x = y²/8.
Put the value of x = y²/8 in equation 2x - y + 4 = 0, we get.
⇒ 2x - y + 4 = 0.
⇒ 2(y²/8) - y + 4 = 0.
⇒ y²/4 - y + 4 = 0.
⇒ y² - 4y + 16 = 0.
Let β₁ and β₂ be the roots of the equation.
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = - b/a.
⇒ β₁ + β₂ = -(-4)/1 = 4.
⇒ β₁ + β₂ = 4.
Now, we know that,
Formula of :
Midpoint = [(x₁ + x₂)/2, (y₁ + y₂)/2].
⇒ [(α₁ + α₂)/2, (β₁ + β₂)/2].
⇒ [(-2)/(2) , (4)/(2)].
⇒ ( - 1, 2).
The midpoint of PQ = (-1,2).
Solution
Given that the line 2x - y + 4 = 0 cuts the parabola y2 = 8x at P, Q. We need to find the midpoint of PQ.
Substituting y = 2x + 4 in the equation of parabola.
⇒ (2x + 4)2 = 8x
⇒ 4x^2 + 16x + 16 = 8x
⇒ 4x^2 + 8x + 16 = 0
⇒ x^2 + 2x + 4 = 0
Let x1, x2 be the roots. Then, x1 + x2 = - 2
Now substituting
in the equation of the line we get,
⇒ y2 - 4y + 16 = 0
Let y1, y2 be the roots. Then, y1 + y2 = 4
Let us assume P be (x1, y1) and Q be (x2, y2) and R be the midpoint of PQ.
⇒
⇒ r = (- 1, 2)