Math, asked by vaishnavikumar2873, 13 hours ago

The line 2x - y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The midpoint of PQ is

Answers

Answered by vikkiain
0

Answer:

Hence \:  \:  the  \:  \: given  \:  \: equation  \:  \: is  \:  \: wrong.

Step-by-step explanation:

Given, \\ line \:  \:  \: 2x - y + 4 = 0  \\ y = 2x + 4 \:  \: and \\ parabola \:  \:  \:  {y}^{2}  = 8x \\  On \:  \:  solving  \:  \: both \:  \:  the  \:  \: equations \\ putting \: \: value \:  \:of \: y  \\ (2x + 4)^{2}  = 8x \\ 4 {x}^{2}  + 16x + 16 = 8x \\ 4 {x}^{2}  + 8x + 16 = 0 \\ (2x)^{2}  + 2 \times 2x \times 1 +  {1}^{2}  + 15 = 0 \\ (2x + 1)^{2}  =  - 15 \\ 2x + 1 =  \sqrt{ - 15}  \\ The  \:  \: value  \:  \: of \:  \:  x  \:  \: comes \:  \:   \:  \: to  \:  \: be  \:  \: an  \:  \: imaginary  \:  \: number, \\ Hence  \:  \: the \:  \:  given  \:  \: equation \:  \:  is \:  \:  wrong.

Similar questions