Math, asked by hanan686, 7 hours ago

The line 3y+x ,25 is a normal to the curve y=x*x-5x+k find the value of constant K

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

\sf{Given\,\,\,that\,\,\,3\,y+x=25\,\,\,is\,\,\,a\,\,\,normal\,\,\,to\,\,\,the\,\,\,curve\,\,\,y=x^2-5x+k}

So,

\tt{3y=-x+25}

\tt{\implies\,y=\left(-\dfrac{1}{3}\right)x+\dfrac{25}{3}}

So,

\mapsto\,\bold{\sf{Slope\,\,of\,\,normal=\,-\dfrac{1}{3}}}

Also, differentiating the curve w.r.t x

\tt{\dfrac{dy}{dx}=2x-5}

\mapsto\,\bold{\sf{Slope\,\,of\,\,normal=\,-\dfrac{1}{2x-5}}}

Now,

\sf{-\dfrac{1}{3}=-\dfrac{1}{2x-5}}

\sf{\implies\dfrac{1}{3}=\dfrac{1}{2x-5}}

\sf{\implies2x-5=3}

\sf{\implies2x=3+5}

\sf{\implies2x=8}

\sf{\implies\,x=4}

Put this value in the equation of normal

\sf{3y+4=25}

\sf{\implies3y=25-4}

\sf{\implies3y=21}

\sf{\implies\,y=7}

So, the point (4, 7) lies on the curve

\tt{y=x^2-5x+k}

\tt{\implies\,(7)=(4)^2-5(4)+k}

\tt{\implies\,7=16-20+k}

\tt{\implies\,7=-4+k}

\tt{\implies\,7+4=k}

\tt{\implies\,k=11}

Similar questions