Math, asked by harmankaurdhillonhar, 2 months ago

the line joining (1, 2,3) and(-3, -2, 4) meet the yz plane at the point​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

We know that

Line joining the points (a, b, c) and (d, e, f) is given by

\rm :\longmapsto\:\dfrac{x - a}{d - a}  = \dfrac{y - b}{e - b}  = \dfrac{z - c}{f - c}  = k

Thus,

Equation of line joining the points (1, 2, 3) and (- 3, - 2, 4) is given by

\rm :\longmapsto\:\dfrac{x - 1}{ - 3 - 1}  = \dfrac{ y - 2}{ - 2 - 2}  = \dfrac{z - 3}{4 - 3}  = k

\rm :\longmapsto\:\dfrac{x - 1}{ - 4}  = \dfrac{ y - 2}{  - 4}  = \dfrac{z - 3}{1}  = k

So, Let assume that P be any point on the line joining the points (1, 2, 3) and (- 3, - 2, 4) when line crosses the yz - plane, whose co-ordinates is given by

\rm :\longmapsto\:x =  - 4k + 1

\rm :\longmapsto\:y =  - 4k + 2

\rm :\longmapsto\:z =  k + 3

Hence,

Coordinates of P ( - 4k + 1, - 4k + 2, k + 3).

Since, the line crosses the yz - plane.

\rm :\longmapsto\:x - coordinate = 0

\rm :\longmapsto\: - 4k + 1 = 0

\rm :\longmapsto\: - 4k =  - 1

\rm :\implies\:k = \dfrac{1}{4}

So,

\rm :\longmapsto\:x =  - 4k + 1 = 0

\rm :\longmapsto\:y =  - 4k + 2 =  - 1 + 2 = 1

\rm :\longmapsto\:z =  k + 3 =  \dfrac{1}{4} + 3 =  \dfrac{13}{4}

Hence,

Coordinates of the point P is given by

 \boxed{ \bf{Coordinates  \: P \: is \: \bigg(0, \: 1, \: \dfrac{13}{4}  \bigg)  \: }}

Additional Information :-

Let us consider two lines

\rm :\longmapsto\:\vec{r}  = \vec{a_1}  +  \alpha \vec{b_1}

and

\rm :\longmapsto\:\vec{r}  = \vec{a_2}  +  \beta  \vec{b_2}

then

1. Two lines are parallel iff

\rm :\longmapsto\:\vec{b_1} = k \: \vec{b_2}

2. Two lines are perpendicular iff

\rm :\longmapsto\:\vec{b_1} \: . \: \vec{b_2} = 0

3. Angle between two lines is given by

\rm :\longmapsto\:cos \theta \:  = \dfrac{\vec{b_1}.\vec{b_2}}{ |\vec{b_1}| \:  |\vec{b_2}|  }

Similar questions