The line of the angle between the vectors à = 3î +j+k, b= 2î - 2j+k is
Answers
Answered by
8
EXPLANATION.
Angle between the vectors.
⇒ a = 3i + j + k.
⇒ b = 2i - 2j + k.
As we know that,
⇒ | a | = √(3)² + (1)² + (1)².
⇒ | a | = √9 + 1 + 1.
⇒ | a | = √11.
⇒ | b | = √(2)² + (-2)² + (1)².
⇒ | b | = √4 + 4 + 1.
⇒ | b | = √9.
⇒ | b | = 3.
⇒ (a . b) = (3i + j + k).(2i - 2j + k).
⇒ (a . b) = 6 - 2 + 1.
⇒ (a . b) = 5.
As we know that,
Angle between two vectors.
⇒ cosθ = a . b/| a | | b |.
⇒ cosθ = 5/3√11.
MORE INFORMATION.
Properties of scalar products.
(1) = (a . b) . b is not defined.
(2) = (a + b)² = a² + 2 a. b + b².
(3) = (a - b)² = a² - 2 a. b + b².
(4) = (a + b).(a - b) = a² - b².
(5) = | a + b | = |a| + |b| = a ║ b.
(6) = | a + b |² = |a|² + |b|² = a ⊥ b.
(7) = | a + b| = |a - b| = a ⊥ b.
Similar questions